MATH 132 Midterm, Fall 2016
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Justify All Your Answers. No Points Will Be Gix-ren Without Suffi-
cient Reasoning/Calculations.

Problem 1. (5)

(I) Find the derivative of w = (2 + 1) in two ways by (i) considering w as the
inverse function of z = w™ — 1 and using inverse function theorem or (ii) using
the formula w = en-log(=+1),

In both methods, specify the branches of the functions used in your computation.

(II) Are the results from the two methods the same? Are the derivatives of
different branches the same?
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Problem 2. (5)

(I)Find the fractional linear transformation f such that f(0) = 1+, f(1) = 2i,
f(oo) ==1+1.

(I) Find the images of the z-axis and y-axis of f.
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Problem 3. (5)

(I) Assume that f(z) = u(z,y) + v(z,y)i is a_analytic function defined on a

domain D such that the imaginary part v(z,y) is a constant. Show that f is a
constant.

(II) Prove or disprove the following statements (a ) both real and imaginary
parts of f(z) = 2% are harmonic on the complex plane C; (b) f(z) = 2% is
analytic on C.
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Problem 4. (5)
(i) Show that u(z,y) = 2y — $y® + 2z + 3y is harmonic.

(i) Find the harmonic conjugate of u in (i) by solving the Cauchy-Riemann
equation.

Note: No points will be given for (ii) without solving the Cauchy-Riemann
equation. '
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Problem 5. (5)
(i) Decide if the differentials ¢1 = (z3%» + 2)dz + (z5z + y)dy and ¢2 =

(z7557 — ¥)dz + (5= + z)dy are closed on C\ 0.
(ii) Is ¢ exact on C\ 07
(iii) What is the maximal domain on which ¢; is exact?

(iv) Find the line integral | L @2, where «y consists of the three oriented line
segments AB, BC and CA with A= (~1,-1), B = (1,~1) and C {Q,1).
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