Math 131AH, Honors Analysis, UCLA Fall 2016 Exam 2, November 14, 2016

Burt Totaro

No electronics are permitted. You can use results from the course in your proofs, but please say what results you are using.

(1) If $(s_n)_{n \in \mathbb{N}}$ is a sequence of complex numbers, define its sequence of arithmetic means σ_n to be

$$\sigma_n = \frac{s_0 + s_1 + \dots + s_n}{n+1}.$$

If $\lim s_n = s$, prove that $\lim \sigma_n = s$.

(2) Let X be a metric space which is a union of two subsets, $X = A \cup B$. Suppose that A and B are connected, and that $A \cap B$ is not empty. Show that X is connected.

(3) Let $e = \sum_{n=0}^{\infty} 1/n!$, as usual. Let N be the smallest natural number such that

$$\left| e - \sum_{n=0}^{N} \frac{1}{n!} \right| < \frac{1}{100}.$$

Give explicit upper and lower bounds for N. (You don't have to find optimal bounds, but try to make your upper bound at most 2 times your lower bound. With care, you may be able to compute N exactly.)

1

$$\frac{Y}{720} = \frac{1}{100} = \frac{1}{20} = \frac{1}{100} = \frac{1}{26^{3}} = \frac{1}{20} = \frac{1}{$$