Math 131AH, Honors Analysis, UCLA FalI 2016

Final Exam, December 9, 2016

Burt Totaro

There are 9 problems.

No electronics are permitted. You can use results from the course in your proofs, but please say what results you are using.

 $\bigcup(1)$ Let f and g be real-valued functions on an open interval containing a point x in R. Suppose that f and g are differentiable at x, that $g'(x) \neq 0$, and that $f(x) = g(x) = 0$. Show that

$$
\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}.
$$

(2) Let f be a real-valued function on a closed interval [a, b] such that the second. derivative f'' is defined and < 0 everywhere on [a, b]. Show that there is a unique point in $[a, b]$ at which f attains its maximum.

What can you say about the order of the set S of points at which f attains its minimum? (That is, give examples to show the possible sizes of S , and prove that you/have listed all the possible sizes.)

(3) Let k be a positive integer. Let $E_1 \supset E_2 \supset \cdots$ be a decreasing sequence of nonempty closed bounded subsets of \mathbb{R}^k . Show that the intersection $\bigcap_{n=1}^{\infty} E_n$ is nonempty. $\int f$

Is that conclusion true if we omit the assumption that the sets E_n are bounded? Prove or give a counterexample.

(4) Let X be a connected metric space. Show that X has property (*): for any $a > 0$ and any points $x, y \in X$, there is a finite sequence of points $p_0 = x$, $s_1, p_2, \ldots, p_n = y$ (for some $n \in \mathbb{Z}^+$) such that $d(p_i, p_{i+1}) < a$ for all $i \in \{0, \ldots, n-1\}$

Conversely, if X is a nonempty closed subset of \mathbb{R}^2 with property (*), is $X \cup$ pected? Prove or give a counterexample. congected? Prove or give a counterexample.

 $\sqrt{(5)}$ Does the series $\sum_{n=1}^{\infty}({\sqrt[n]{2}-1})$ converge? (Hint: to get an idea of how close $\sqrt[n]{2}$ is to 1, look at log($\sqrt[n]{2}$).) Justify your answer. (You can use what you know about $\log x$ and its inverse, function e^x , for example that $\log x$ is defined and continuous on $(0, \infty)$.) $1 \cos 2^{-1}$ $\log \sqrt[3]{2} \approx \frac{1}{n}$

 $2e^{\frac{1}{n}}-n$

 $\frac{1}{2}$ \leq $(52-1)$ (252) - n

 $\frac{1}{n}$ \overline{c}

L

e

{

 \mathbb{Z}

 $2.62.6$

 $\binom{1}{0}$ Write 0 for the origin $(0,0)$ in \mathbb{R}^2 . Let $f : \mathbb{R}^2 - \{0\} \to \mathbb{R}$ be a continuous function. What can you say about the image of f ?

 $C\rightarrow 4$

--a

 \vee

Also, give examples of continuous functions $f : \mathbb{R}^2 - \{0\} \to \mathbb{R}$ whose image is (a) $(0, 1)$, (b) $[0, 1)$, and (c) $[0, 1]$. Justify your answers.

(7) Let X be a compact metric space. Show that X has property $(*)$: for every $a>0$, there is a finite subset $S = \{x_1, \ldots, x_n\}$ of X (for some $n \in \mathbb{Z}^+$) such that every point in X has distance $\langle \hat{c} \rangle$ at least one of x_1, \ldots, x_n . $J \propto \frac{1}{2}$ \approx $\frac{1}{2}$

if X is a metric space with property $(*)$, is X necessarily compact? What if X is a complete metric space with property $(*)$: is X compact? Prove or give counterexamples.

(8) Let a be a real number > 1. Define a sequence $(b_n)_{n\in\mathbb{N}}$ by $b_0=1$ and

$$
b_{n+1} = \frac{1}{2} \left(b_n + \frac{a}{b_n} \right)
$$

for $n\geq 0$. Show that $\lim_{n\to\infty}b_n=\sqrt{a}$.

(9) You may use that the natural logarithm $f(x) = \log x$ is a differentiable function on $(0, \infty)$ with $f(1) = 0$ and $f'(x) = 1/x$. Show that

$$
\log x = \sum_{j=1}^{\infty} (-1)^{j-1} \frac{(x-1)^j}{j}
$$

for all $x \in (0, 2)$. Does this formula remain true when $x > 2$? Justify your answer.

 ℓ ay $x = \ell$ ay \circledast lay $a = 1$ $(x-1)$ $a = 0, 1(x-1) + (-1)$ $log (axh) = log x + \frac{log' ax}{1!}$ A $\overline{1}$ $\int_{\alpha}^{u}x=-\frac{1}{x^2}=-\frac{1}{x^2}$ \bigwedge $\frac{1}{2}$ L $\mathcal O$ $x = -\frac{1}{6} \cdot \frac{1}{x}$ $\frac{1}{x^2}$ $y = \frac{1}{7} + 3 =$ $\sqrt{ }$ $0 + 1(y-1)$ $\mathcal{L}_{\mathcal{A}}$ $\overline{\nu}$ \cdot h $\log^{11} x \quad (\frac{1}{x})^{\prime}$ -1 \mathbb{Z}_{2} \mathbb{Z} 1r, 0A d 6 + $\frac{1}{x}$ \ x $\int_0^1 \frac{1}{(x-1)^3} dx(x-1) = \log 1 + \log 1 \cdot (x-1) + \log 1 \cdot (x-1)^7$ $\qquad \qquad \frac{1}{(x-1)^3} = \frac{1}{(x-1)^3}$ 2 $2!$ -tl