
MATH 131A-2 MIDTERM 01 SOLUTION

Exercise 1. (3 + 3 + 4 = 10 pts) Write down the sup and inf for the following sets.
(1) {(−2)n | n ∈ Z}, (2) {x | x2 < 3}, (3) {(−1)n + 1

n
| n ∈ N}.

Proof. (1) inf = −∞ and sup = +∞.
(2) inf = −

√
3 and sup =

√
3.

(3) inf = −1 and sup = 3
2
.

For (3), we see that both ((−1)2k + 1
2k

) and ((−1)2k+1 + 1
2k+1

) are decreasing. Moreover,

limn→+∞
1
n

= 0. �

Exercise 2. (10 + 10 = 20 pts)Consider the sequence (sn) such that s1 = 1 and sn+1 =√
sn + 2.
(1) Show by induction that 2 > sn+1 > sn for all n.
(2) Show that (sn) converges to 2.

Proof. (1) (5 pts for induction redaction, 5 pts for calculation)
We will prove by induction on n that

2 > sn+1 > sn

is true for all n ∈ N. If n = 1, then s2 =
√

3 and hence 2 > s2 > s1 is true. Assume that
this property is true for some n > 1.

We will now prove that 2 > sn+2 > sn+1. Since sn+1 > sn by induction, we have√
sn+1 + 2 >

√
sn + 2, which means that sn+2 > sn+1. Moreover, since sn+1 6 2 by in-

duction, we also have sn+2 =
√
sn+1 + 2 6

√
2 + 2 = 2. This completes the induction.

Remark: In this exercise, the function x 7→
√
x + 2 is obviously increasing. Hence we may

say, for example, “
√
sn+1 + 2 >

√
sn + 2 since sn+1 > sn” without further explanation.

(2)(5 pts for existence of limit, 5 pts for computation)
Since (sn) is increasing and bounded above by 2 after part (1), the sequence (sn) converges

to some real number s. Thus, by limit theorem, we have s =
√
s + 2, which implies that

s2 − s− 2 = 0. Thus s has two possible values: 2 and −1. Since sn > 0 from the definition,
we have s > 0. Thus s = 2.

Remark: Some people say that “since (sn) is increasing and bounded above by 2, it
converges to 2”. This argument is completely false. In fact, in this exercise, (sn) is increasing
and also bounded above by 3, but lim sn is not 3. �

Exercise 3. (8 + 8 + 8 + 6 = 30 pts) Consider the sequence (sn) such that s1 = 4 and
sn+1 = 1

2
( 4
sn

+ sn) for all positive integer n.

(1) Show that, for all n,

s2n+1 − 4 =
(s2n − 4)2

4s2n
.

(2) Show by induction on n that sn > 2 for all n.
1
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(3) If an = s2n − 4, then show that |an+1

an
| 6 1

4
.

(4) What is the limit of (an), and what about the limit of (sn)?

Proof. (1) For each n, we have

s2n+1 − 4 =
1

4
(
4 + s2n
sn

)2 − 4 =
16 + 8s2n + s4n

4s2n
− 4

=
16 + 8s2n + s4n − 16s2n

4s2n
=

16− 8s2n + n4

4s2n

=
(s2n − 4)2

4s2n
.

(2)(4 pts for induction redaction, 4 pts for computation)
We will show by induction on n that sn > 2 for all n > 1. If n = 1, then s1 = 4, which is

larger than 2. We assume that sn > 2 for some n > 1.
We will now show that sn+1 > 2. Since sn > 0, we have sn+1 > 0. Since sn > 2, we have

s2n− 4 > 0. Thus (s2n− 4)2 > 0 and hence s2n+1− 4 = (s2n−4)2
4s2n

> 0. Since sn+1 > 0, this shows

that sn+1 > 2 and completes the induction.
Remark: If one just replaces sn by 2 in the expression of s2n+1 − 4 and claims that

sn+12 − 4 > 22−4
4·22 = 0, without mentioning the monotony of the function x 7→ (x−4)2

4x
, then

he/she will not get the 4 pts for computation. Also, the formula “x+ 4
x
> 4 for all positive x”

does not suffice to conclude the strict inequality >. If one uses this method, he/she should
mention that the equality of x + 4

x
> 4 holds if and only if x = 2.

(3) Since an = s2n − 4 for all n, we have an > 0 and

|an+1

an
| = |

s2n+1 − 4

s2n − 4
| = |s

2
n − 4

4s2n
| = s2n − 4

4s2n
=

1

4
− 1

s2n
.

Since 1
s2n

> 0, we have |an+1

an
| 6 1

4
.

(4) (3 pts for existence of limit, 3 pts for computation)
Since

|an+1

an
| 6 1

4
,

we have lim an = 0. Note that s2n = 4 + an and sn > 0. We have sn =
√

4 + an. Thus, by
limit theorem, lim sn =

√
4 + 0 = 2.

Remark: One may assume lim sn = s and use limit theorem to show that

s2 − 4 =
(s2 − 4)2

4s2
.

However, in order to do this, one must show that s exists and is not zero. �

Exercise 4. (8 + 8 + 8 + 8 + 8 = 40 pts) Consider the sequence (sn) such that sn =
1 + 1

1!
+ 1

2!
+ · · ·+ 1

n!
.

(1) Show by induction that sn 6 3− 1
n

for every n.
(2) Prove that (sn) converges.
Let e be the limit of sn.
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(3) Let tn = sn + 1
n!

. What is the limit of (tn)?
(4) Show that tn > tn+1 for all n > 2. Conclude that sn < e < tn for all n.
(5) Show that e is irrational. (Hint: assume by contradiction that e = p

q
with q > 0, what

can we say about q! · sq, q! · e and q! · tq?)

Proof. (1) (4 pts for induction redaction, 4 pts for calculation)
We will prove by induction on n that sn 6 3 − 1

n
for every n. If n = 1, then s1 = 2 and

3− 1 = 2. Thus s1 6 2 is true. Assume that this property holds for some n > 1.
We will now prove that sn+1 6 3− 1

n+1
. Note that sn+1 = sn + 1

(n+1)!
, thus by induction,

sn+1 6 3− 1

n
+

1

(n + 1)!
.

Since n > 1, we have (n + 1)! > n(n + 1). Thus 1
(n+1)!

6 1
n(n+1)

. Hence

sn+1 6 3− 1

n
+

1

n(n + 1)
= 3− 1

n + 1
.

Remark: The idea behind the proof is as follows. It is not hard to achieve sn+1 6
3− 1

n
+ 1

(n+1)!
. Then it is enough to show that

− 1

n
+

1

(n + 1)
6 − 1

n + 1
,

which is equivalent to
1

(n + 1)!
6

1

n
− 1

n + 1
=

1

n(n + 1)
.

This is true since

(n + 1)! > n(n + 1).

This is why we throw out the statement “since n > 1, we have (n+1)! > n(n+1)” in the proof.

(2) From the definition, we see that sn < sn+1 for all n > 1. By part (1), (sn) is bounded
above by 3. Thus (sn) converges.

Remark: The bound of a sequence should be a constant, independent of n. Thus 3− 1
n

is
not an upper bound of (sn).

(3) By limit theorem, we have lim tn = lim sn + lim 1
n!

= e + 0 = e.

(4) Let n > 2 fixed. Then

tn+1 − tn = sn+1 +
1

(n + 1)!
− sn −

1

n!
=

1

(n + 1)!
+

1

(n + 1)!
− 1

n

=
2

(n + 1)!
− 1

n!
=

1

n!
(

2

n + 1
− 1).

Since n > 2, we have 2 < n + 1. Thus 2
n+1
− 1 < 0. Since 1

n!
> 0, we have

tn+1 − tn =
1

n!
(

2

n + 1
− 1) < 0,

which is tn+1 < tn.
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Since (sn) increases strictly and converges to e, we have sn < e for all n > 1. Similarly,
since (tn) decreases strictly from term 2, and (tn) converges to e, we have e < tn for all n.

Remark: For sn < e < tn, one must mention that (sn) is strictly increasing and (tn) is
strictly decreasing from term 2.

(5) Assume the opposite. Then there is a positive integer q and an integer p such that
e = p

q
. Then q!e = q! · p

q
= (q − 1)! · p is an integer. (we use the convention that 0! = 1).

Moreover, q!sq = q!(1 + 1
1!

+ 1
2!

+ · · · 1
q!

). Since q! is divided by i! for all positive integer

i 6 q, we obtain that q!sq is an integer. Thus q!tq = q!sq + 1 is also an integer. From part
(4), we have

q!sq < q!e < q!tq = q!sq + 1.

Since q!sq and q!e are integers, this is a contradiction. �


