MATH 131A-2 MIDTERM 01 SOLUTION

Exercise 1. $(3+3+4=10$ pts) Write down the sup and inf for the following sets. (1) $\{(-2)^n \mid n \in \mathbb{Z}\},$ (2) $\{x \mid x^2 < 3\},$ (3) $\{(-1)^n + \frac{1}{n}\}$ $\frac{1}{n} \mid n \in \mathbb{N}$.

Proof. (1) inf = $-\infty$ and sup = $+\infty$.

 ω_{0} . (1) inf = $-\sqrt{3}$ and sup = $\sqrt{3}$.
(2) inf = $-\sqrt{3}$ and sup = $\sqrt{3}$.

(3) inf = -1 and sup = $\frac{3}{2}$.

For (3), we see that both $((-1)^{2k} + \frac{1}{2k})$ $\frac{1}{2k}$) and $((-1)^{2k+1} + \frac{1}{2k+1})$ are decreasing. Moreover, $\lim_{n\to+\infty}\frac{1}{n}$ $\frac{1}{n} = 0.$

Exercise 2. $(10 + 10 = 20 \text{ pts})$ Consider the sequence (s_n) such that $s_1 = 1$ and $s_{n+1} = \sqrt{(s_n s) s_n}$ $\sqrt{s_n+2}.$

(1) Show by induction that $2 \geq s_{n+1} \geq s_n$ for all n.

(2) Show that (s_n) converges to 2.

Proof. (1) (5 pts for induction redaction, 5 pts for calculation)

We will prove by induction on n that

$$
2 \geqslant s_{n+1} \geqslant s_n
$$

is true for all $n \in \mathbb{N}$. If $n = 1$, then $s_2 = \sqrt{3}$ and hence $2 \ge s_2 \ge s_1$ is true. Assume that this property is true for some $n \geq 1$.

We will now prove that $2 \geq s_{n+2} \geq s_{n+1}$. Since $s_{n+1} \geq s_n$ by induction, we have We will now prove that $2 \ge s_{n+2} \ge s_{n+1}$. Since $s_{n+1} \ge s_n$ by induction, we have $\sqrt{s_{n+1}+2} \ge \sqrt{s_n+2}$, which means that $s_{n+2} \ge s_{n+1}$. Moreover, since $s_{n+1} \le 2$ by induction, we also have $s_{n+2} = \sqrt{s_{n+1} + 2} \leq \sqrt{2+2} = 2$. This completes the induction.

Remark: In this exercise, the function $x \mapsto \sqrt{x+2}$ is obviously increasing. Hence we may *Remark:* In this exercise, the function $x \mapsto \sqrt{x} + 2$ is obviously increasing. Hence we say, for example, $\sqrt[s]{s_{n+1} + 2} \geq \sqrt{s_n + 2}$ since $s_{n+1} \geq s_n$ " without further explanation.

(2)(5 pts for existence of limit, 5 pts for computation)

Since (s_n) is increasing and bounded above by 2 after part (1), the sequence (s_n) converges to some real number s. Thus, by limit theorem, we have $s = \sqrt{s+2}$, which implies that $s^2 - s - 2 = 0$. Thus s has two possible values: 2 and -1. Since $s_n \geq 0$ from the definition, we have $s \geqslant 0$. Thus $s = 2$.

Remark: Some people say that "since (s_n) is increasing and bounded above by 2, it converges to 2 ". This argument is completely false. In fact, in this exercise, (s_n) is increasing and also bounded above by 3, but $\lim s_n$ is not 3.

Exercise 3. $(8+8+8+6=30$ pts) Consider the sequence (s_n) such that $s_1 = 4$ and $s_{n+1} = \frac{1}{2}$ $\frac{1}{2}(\frac{4}{s_r})$ $\frac{4}{s_n} + s_n$) for all positive integer *n*.

 (1) Show that, for all n,

$$
s_{n+1}^2 - 4 = \frac{(s_n^2 - 4)^2}{4s_n^2}.
$$

(2) Show by induction on *n* that $s_n > 2$ for all *n*.

(3) If $a_n = s_n^2 - 4$, then show that $\left| \frac{a_{n+1}}{a_n} \right|$ $\frac{n+1}{a_n} \leqslant \frac{1}{4}$ $\frac{1}{4}$.

(4) What is the limit of (a_n) , and what about the limit of (s_n) ?

Proof. (1) For each n , we have

$$
s_{n+1}^2 - 4 = \frac{1}{4} \left(\frac{4 + s_n^2}{s_n} \right)^2 - 4 = \frac{16 + 8s_n^2 + s_n^4}{4s_n^2} - 4
$$

=
$$
\frac{16 + 8s_n^2 + s_n^4 - 16s_n^2}{4s_n^2} = \frac{16 - 8s_n^2 + n^4}{4s_n^2}
$$

=
$$
\frac{(s_n^2 - 4)^2}{4s_n^2}.
$$

(2)(4 pts for induction redaction, 4 pts for computation)

We will show by induction on *n* that $s_n > 2$ for all $n \ge 1$. If $n = 1$, then $s_1 = 4$, which is larger than 2. We assume that $s_n > 2$ for some $n \geq 1$.

We will now show that $s_{n+1} > 2$. Since $s_n > 0$, we have $s_{n+1} > 0$. Since $s_n > 2$, we have $s_n^2 - 4 > 0$. Thus $(s_n^2 - 4)^2 > 0$ and hence $s_{n+1}^2 - 4 = \frac{(s_n^2 - 4)^2}{4s_n^2}$ $\frac{(n-4)^2}{4s_n^2} > 0$. Since $s_{n+1} > 0$, this shows that $s_{n+1} > 2$ and completes the induction.

Remark: If one just replaces s_n by 2 in the expression of $s_{n+1}^2 - 4$ and claims that $s_{n+1^2} - 4 > \frac{2^2 - 4}{4 \cdot 2^2}$ $\frac{d^{2}-4}{4\cdot 2^{2}}$ = 0, without mentioning the monotony of the function $x \mapsto \frac{(x-4)^{2}}{4x}$, then he/she will not get the 4 pts for computation. Also, the formula " $x + \frac{4}{x} \ge 4$ for all positive x" does not suffice to conclude the strict inequality $>$. If one uses this method, he/she should mention that the equality of $x + \frac{4}{x} \geqslant 4$ holds if and only if $x = 2$.

(3) Since $a_n = s_n^2 - 4$ for all n, we have $a_n > 0$ and

$$
\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{s_{n+1}^2 - 4}{s_n^2 - 4}\right| = \left|\frac{s_n^2 - 4}{4s_n^2}\right| = \frac{s_n^2 - 4}{4s_n^2} = \frac{1}{4} - \frac{1}{s_n^2}.
$$

Since $\frac{1}{s_n^2} > 0$, we have $\left| \frac{a_{n+1}}{a_n} \right|$ $\frac{n+1}{a_n} \leqslant \frac{1}{4}$ $\frac{1}{4}$.

(4) (3 pts for existence of limit, 3 pts for computation) Since

$$
|\frac{a_{n+1}}{a_n}|\leqslant \frac{1}{4},
$$

we have $\lim a_n = 0$. Note that $s_n^2 = 4 + a_n$ and $s_n > 0$. We have $s_n =$ √ te that $s_n^2 = 4 + a_n$ and $s_n > 0$. We have $s_n = \sqrt{4 + a_n}$. Thus, by limit theorem, $\lim s_n = \sqrt{4+0} = 2$.

Remark: One may assume $\lim s_n = s$ and use limit theorem to show that

$$
s^2 - 4 = \frac{(s^2 - 4)^2}{4s^2}.
$$

However, in order to do this, one must show that s exists and is not zero. \Box

Exercise 4. $(8+8+8+8+8=40 \text{ pts})$ Consider the sequence (s_n) such that $s_n =$ $1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n}$ $\frac{1}{n!}$.

- (1) Show by induction that $s_n \leqslant 3 \frac{1}{n}$ $\frac{1}{n}$ for every *n*.
- (2) Prove that (s_n) converges.
- Let e be the limit of s_n .

(3) Let $t_n = s_n + \frac{1}{n}$ $\frac{1}{n!}$. What is the limit of (t_n) ?

(4) Show that $t_n > t_{n+1}$ for all $n \ge 2$. Conclude that $s_n < e < t_n$ for all n.

(5) Show that e is irrational. (Hint: assume by contradiction that $e = \frac{p}{q}$ $\frac{p}{q}$ with $q > 0$, what can we say about $q! \cdot s_q$, $q! \cdot e$ and $q! \cdot t_q$?)

Proof. (1) (4 pts for induction redaction, 4 pts for calculation)

We will prove by induction on n that $s_n \leqslant 3 - \frac{1}{n}$ $\frac{1}{n}$ for every *n*. If $n = 1$, then $s_1 = 2$ and $3 - 1 = 2$. Thus $s_1 \leq 2$ is true. Assume that this property holds for some $n \geq 1$.

We will now prove that $s_{n+1} \leqslant 3 - \frac{1}{n+1}$. Note that $s_{n+1} = s_n + \frac{1}{(n+1)!}$, thus by induction,

$$
s_{n+1} \leqslant 3 - \frac{1}{n} + \frac{1}{(n+1)!}.
$$

Since $n \geq 1$, we have $(n + 1)! \geq n(n + 1)$. Thus $\frac{1}{(n+1)!} \leq \frac{1}{n(n+1)}$. Hence

$$
s_{n+1} \leqslant 3 - \frac{1}{n} + \frac{1}{n(n+1)} = 3 - \frac{1}{n+1}
$$

Remark: The idea behind the proof is as follows. It is not hard to achieve $s_{n+1} \leq$ $3 - \frac{1}{n} + \frac{1}{(n+1)!}$. Then it is enough to show that

$$
-\frac{1}{n}+\frac{1}{(n+1)}\leqslant -\frac{1}{n+1},
$$

which is equivalent to

$$
\frac{1}{(n+1)!} \leqslant \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}.
$$

This is true since

.

$$
(n+1)! \geqslant n(n+1).
$$

This is why we throw out the statement "since $n \geq 1$, we have $(n+1)! \geq n(n+1)$ " in the proof.

(2) From the definition, we see that $s_n < s_{n+1}$ for all $n \geq 1$. By part (1), (s_n) is bounded above by 3. Thus (s_n) converges.

Remark: The bound of a sequence should be a constant, independent of n. Thus $3-\frac{1}{n}$ $\frac{1}{n}$ is not an upper bound of (s_n) .

(3) By limit theorem, we have $\lim t_n = \lim s_n + \lim \frac{1}{n!} = e + 0 = e$.

(4) Let $n \geqslant 2$ fixed. Then

$$
t_{n+1} - t_n = s_{n+1} + \frac{1}{(n+1)!} - s_n - \frac{1}{n!} = \frac{1}{(n+1)!} + \frac{1}{(n+1)!} - \frac{1}{n}
$$

=
$$
\frac{2}{(n+1)!} - \frac{1}{n!} = \frac{1}{n!} (\frac{2}{n+1} - 1).
$$

Since $n \ge 2$, we have $2 < n + 1$. Thus $\frac{2}{n+1} - 1 < 0$. Since $\frac{1}{n!} > 0$, we have 1 2

$$
t_{n+1} - t_n = \frac{1}{n!} \left(\frac{2}{n+1} - 1 \right) < 0,
$$

which is $t_{n+1} < t_n$.

Since (s_n) increases strictly and converges to e, we have $s_n < e$ for all $n \geq 1$. Similarly, since (t_n) decreases strictly from term 2, and (t_n) converges to e, we have $e < t_n$ for all n.

Remark: For $s_n < e < t_n$, one must mention that (s_n) is *strictly* increasing and (t_n) is strictly decreasing from term 2.

(5) Assume the opposite. Then there is a positive integer q and an integer p such that $e = \frac{p}{a}$ $q^{\frac{p}{q}}$. Then $q!e = q! \cdot \frac{p}{q} = (q-1)! \cdot p$ is an integer. (we use the convention that $0! = 1$). Moreover, $q!s_q = q!(1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{q!})$ $\frac{1}{q!}$). Since q! is divided by i! for all positive integer $i \leq q$, we obtain that $q!s_q$ is an integer. Thus $q!t_q = q!s_q + 1$ is also an integer. From part (4) , we have

$$
q!s_q < q!e < q!t_q = q!s_q + 1.
$$

Since $q!s_q$ and $q!e$ are integers, this is a contradiction.