MATH 131A - MIDTERM EXAM 2

0.1. Instructions. This is a 50 minute exam. You should feel free to quote any theorems proved in class, as well as anything proved in the homework or discussion section. There are 6 questions—you are required to do the final true/false question, and choose 4 of the remaining 5. Only 4 problems other than the true/false question will be graded so *you should indicate which problems you want graded*, in the case that you attempt all 6. Each question is worth 10 points.

Exercise 0.1. Suppose $(s_n)_{n \in \mathbb{N}}$ and $(t_n)_{n \in \mathbb{N}}$ are sequences. Show

lim sup $s_n t_n \leq \limsup s_n \limsup t_n$.

Proof. Given any N, if $n > N$ then $a_n \leq \sup\{a_m : m > N\}$ and $b_n \leq \sup\{b_m : m > N\}$ so $a_n b_n \leq \sup\{a_m : m > N\}$ sup $\{b_m : m > N\}$. As $n > N$ is arbitrary, we have

 $\sup\{a_m b_m : m > N\} \leq \sup\{a_m : m > N\} \sup\{b_m : m > N\}.$

Taking the limit as *N* tends to ∞ yields the desired inequality. \Box

Exercise 0.2. Suppose $f : \mathbb{R} \to \mathbb{R}$ is defined by

$$
f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}
$$

Show that *f* is not continuous at any point in the domain.

Proof. Fix $x_0 \in \mathbb{R}$. Case 1: $x_0 \in \mathbb{Q}$. Then for any $\delta > 0$, we can find some irrational x with $|x - x_0| < \delta$ by the density of the irrationals so $|f(x) - f(x_0)| = |0 - 1| = 1$, which shows *f* is not continuous at *x*₀. Case 2: *x*₀ \notin Q. Then, for any $\delta > 0$, there is some rational *x* so that $|x - x_0| < \delta$ and then $|f(x) - f(x_0)| = |1 - 0| = 1$. It follows that for any $x_0 \in \mathbb{R}$, there is an ϵ , namely 1, so that for any $\delta > 0$, there is *x* with $|x - x_0| < \delta$ and $|f(x) - f(x_0)| > 1$ so f is not continuous at x_0 $|f(x) - f(x_0)| \geq 1$, so *f* is not continuous at *x*₀.

Exercise 0.3. Let $(s_n)_{n\in\mathbb{N}}$ be a sequence defined by s_n is the *n*th number after the decimal point in π . Since $\pi = 3.14159...$ we have $s_1 = 1$, $s_2 = 4$, $s_3 = 1$, and so on. Prove that $(s_n)_{n \in \mathbb{N}}$ has a convergent subsequence.

Proof. By the peak point lemma, $(s_n)_{n \in \mathbb{N}}$ has a monotone subsequence. It is bounded (because contained in [0, 10]) so converges. (because contained in $[0, 10]$) so converges.

Exercise 0.4. Suppose $f : [a, b] \to \mathbb{R}$ is a continuous function and for each $\epsilon > 0$, there is an $x \in [a, b]$ so that $|f(x) - l| < \epsilon$. Prove that there is some $x_0 \in [a, b]$ so that $f(x_0) = l$. *Hint*: Find a sequence to which you can apply the Bolzano-Weierstrass theorem.

Proof. For each $n \in \mathbb{N}$, pick x_n so that $|f(x_n) - l| < \frac{1}{n}$. Let $(x_{n_k})_{k \in \mathbb{N}}$ be a convergent subsequence and let $x_0 = \lim_{k \to \infty} x_{n_k}$. We have $x_0 \in [a, b]$, because $[a, b]$ is a closed interval, and, by continuity, $(f(x_{n_k}))_{k \in \mathbb{N}}$ converges to $f(x_0)$. Given any $\epsilon > 0$, choose N so that both $\frac{1}{N} < \frac{\epsilon}{2}$ and $n \ge N$ implies $|f(x_{n_k}) - f(x_0)| < \frac{\epsilon}{2}$. Then for any $n \ge N$,

$$
|f(x_0) - l| = |f(x_0) - f(x_{n_k}) + f(x_{n_k}) - l| \le |f(x_0) - f(x_{n_k})| + |f(x_{n_k}) - l| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
$$
\nThis shows $|f(x_0) - l| < \epsilon$ for arbitrary $\epsilon > 0$ so $f(x_0) - l = 0$, i.e. $f(x_0) = l$.

\n
$$
\Box
$$

Exercise 0.5. Suppose *f* is a uniformly continuous function and $(s_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in the domain of *f*. Prove that $(f(s_n))_{n\in\mathbb{N}}$ is a Cauchy sequence.

Date: February 20, 2019; Ramsey.

Proof. Fix $\epsilon > 0$. There is a $\delta > 0$ so that $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$. There is N so that if $n, n' \ge N$, then $|s_n - s_{n'}| < \delta$ and hence $|f(s_n) - f(s_{n'})| < \epsilon$. As $\epsilon > 0$ was arbitrary, this shows $(f(s_n))_{n \in \mathbb{N}}$ is Cauchy. arbitrary, this shows $(f(s_n))_{n\in\mathbb{N}}$ is Cauchy.

Exercise 0.6. Indicate whether the following statements are true or false:

- (1) If $f : [a, b] \to \mathbb{R}$ is an unbounded function, then f is not continuous.
- (2) If $(s_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in the open interval (a, b) , then it converges to an element of $[a, b]$.
- (3) For any sequence $(s_n)_{n \in \mathbb{N}}$, lim sup s_n is defined.
- (4) If $f : [1, 2] \to \mathbb{R}$ is the function $f(x) = \frac{1}{x^2}$, then f is uniformly continuous.
- (5) If $f : [a, b] \to \mathbb{R}$ and $g : [b, c] \to \mathbb{R}$ are continuous functions and $f(b) = g(b)$, then $h : [a, c] \to \mathbb{R}$ defined by

$$
h(x) = \begin{cases} f(x) & x \in [a, b] \\ g(x) & x \in [b, c] \end{cases}
$$

is continuous.

Proof. (1). True - boundedness states that a continuous function on a closed interval is bounded.

(2). True. Every convergent sequence in $[a, b]$ converges to a point in $[a, b]$ and every Cauchy sequence converges. As $(s_n)_{n \in \mathbb{N}}$ is in (a, b) , it is, in particular, in [a, b].

(3). True. Either $\limsup s_n = \infty$ or the sequence is bounded and the sequence $(t_N)_{N \in \mathbb{N}}$ defined by $t_N = \sup\{s_n : n > N\}$ is decreasing and therefore has a defined limit (possibly $-\infty$).

(4). True, as it is a continuous function whose domain is a closed interval.

(5). True. On the homework, we checked that *h* continuous if and only if given any monotonic sequence $(x_n)_{n\in\mathbb{N}}$ in dom(*h*) that converges to $x_0 \in \text{dom}(h)$, then $(h(x_n))_{n\in\mathbb{N}}$ converges to $h(x_0)$. Given any monotonic sequence $(x_n)_{n\in\mathbb{N}}$ in dom(*h*) there is some *N* so that either $x_n \in [a, b]$ for all $n \geq N$ or $x_n \in [b, c]$ for all $n \geq N$ and hence the desired convergence follows from the continuity of *f* and *g*. (Note: this can also be proved directly using the $\delta - \epsilon$ definition). \Box