
Discussion and Solutions for Midterm II

There were three recurring errors on this exam:

(A). “lim an = 0 ⇒
∑∞

n=1 an converges” This is simply not true – as question 1(i)
on this exam shows. You are confusing this statement with its converse “

∑∞
n=1 an

converges ⇒ lim an = 0” – which is true and useful.

(B) Misusing the comparison test when series do not have positive terms. The
hypothesis in the comparison test is |an| ≤ bn when n > N , not an ≤ bn when
n > N . If the an’s are not all positive, an ≤ bn tells you nothing about how big
|an| is.

(C) People had trouble writing partial sums correctly: You have to write sn =∑n
k=1 ak. Otherwise you end up with sn =

∑n
n=1 an, where there are too many

n’s, or sn =
∑∞

n=1 an which is not a partial sum.

In the solutions here I will give the shortest answers. Other answers can be
correct, but they usually are not.

1. Determine which of the following series converge and state which test or theorem
you would use to prove your answer. You do not need to carry out the tests, but
for comparison tests state which series you would use for comparison.

(i) (3 pts.)
∑∞

n=1
1√
n

Answer: This series diverges by comparison with
∑

1
n , since that series diverges

and 1√
n
≥ 1

n .

(ii) (3pts.)
∑∞

n=1
n2

2n−n

Answer: This series converges by the ratio test. While you were not asked to
carry out the test, many people tried and failed. It goes this way:

|an+1

an
| = (n+ 1)2

2n+1 − (n+ 1)

2n − n

n2
=

1

2
(1 +

1

n
)2(

1− n2−n

1− (n+ 1)2−n
)

which has limit 1/2 as n → ∞ – remember that limn→∞
np

an = 0 for all powers p
when a > 1.

(iii) (4 pts.)
∑∞

n=0(−1)n 1
2n+1

Answer: This converges by the Alternating Series Theorem – it’s a theorem instead
of a test.

2. The instructions for this one are the same as the instructions for problem 1 –
except that this time I am asking you to carry out the tests.
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(iv) (3 pts.)
∑∞

n=1
n2+n+1

n4−2n2+6

Answer: This one converges by comparison with
∑∞

n=1
1
n2 , but people had trouble

doing the comparison. The limit comparison test works best: Let an = n2+n+1
n4−2n2+6

and bn = 1
n2 . Then

lim
n→∞

an
bn

= lim
n→∞

n4 + n3 + n2

n4 − 2n2 + 6
= lim

n→∞

1 + n−1 + n−2

1− 2n−2 + 6n−4
= 1.

(v) (3 pts.)
∑∞

n=1(−1)n+1 n
2n−1

Answer: This diverges because limn→∞ |an| = 1/2.

(vi) (4 pts.)
∑∞

n=1
nn

4nn!

Answer: For this one you had to use the ratio test. If you tried the root test, you
ended up with lim n

4(n!)1/n
which cannot be computed with anything from this or

most other undergraduate courses. Anyway

lim
n→∞

|an+1

an
| = lim

n→∞

(n+ 1)n

4nn
=

1

4
lim

n→∞
(1 +

1

n
)n =

e

4
< 1

So this converges. limn→∞(1 + 1
n )

n turned up in HW Problem 27, but very few
people remembered it, and there were many interesting conjectures about what
limn→∞(1 + 1

n )
n might be.

3. (10 pts.) The sequence {an}∞n=1 is bounded above and increasing: an ≤ an+1.
Prove that there is an α ∈ R such that limn→∞ an = α.

Proof: This problem appeared – for a decreasing sequence – as Problem 3 on the
first hour exam. It could appear again, be warned.

Since S = {an : n ∈ N} is a set of real numbers that is bounded above, it has
a least upper bound α ∈ R. So an ≤ α for all n. Given ϵ > 0, α − ϵ is not an
upper bound for S because α is the least upper bound. Therefore, there is an
aN ∈ S such that α − ϵ < aN . Since an ≤ an+1 for all n, when n > N we have
α− ϵ < aN ≤ an ≤ α. This shows limn→∞ an = α.

4. (5 pts.) One theorem from the past few weeks can be stated as
∑∞

n=1 an
converges if and only if for every ϵ > 0 there is an N such that |am+1 + am+2 +
· · ·+ an| < ϵ when m,n > N . Why is this true?

Answer: The hypothesis here amounts to: Given ϵ > 0, there is an N such that
the partial sums sn =

∑n
k=1 ak satisfy |sn − sm| < ϵ when n,m > N . That

says the partial sums are a Cauchy sequence. So the theorem says “
∑∞

n=1 an is
convergent if and only if the partial sums are a Cauchy sequence”. That is true
because by definition

∑∞
n=1 an is convergent if and only if its sequence of partial

sums converges, and a sequence converges if and only if it is a Cauchy sequence.

(b) (5 pts.) Prove that if
∑∞

n=1 |an| converges, then
∑∞

n=1 an converges.
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Proof: We need to show that the partial sums sn =
∑n

k=1 ak form a Cauchy
sequence. By the triangle inequality when n > m

|sn− sm| = |an+an−1+ · · ·+am+1| ≤ |an|+ |an−1|+ · · ·+ |am+1| = |tn− tm|, (1)

where tn =
∑n

k=1 |ak| is a partial sum for
∑∞

n=1 |an|. Since
∑∞

n=1 |an| converges,
the tn’s are a Cauchy sequence, and (1) shows that this implies that the sn’s are a
Cauchy sequence, too. So

∑∞
n=1 an converges.

5. (10 pts.) Prove the root test. This means prove that
∑∞

n=1 an converges if

lim supn→∞ |an|1/n = L < 1, and diverges if lim supn→∞ |an|1/n = L > 1. You may
use any theorems about limsup’s from class and the homework without reproving
them.

Proof: If L < 1, we can choose ϵ > 0 so that L + ϵ < 1. ϵ = (1 − L)/2 is a good
choice. Then we can use the theorem that, when lim supn→∞ |an|1/n = L, for every
ϵ > 0 there is an N such that |an|1/n < L + ϵ for all n > N . So |an| < (L + ϵ)n

when n > N . Thus

n∑
k=1

|ak| ≤
N∑

k=1

|ak|+
n∑

k=N+1

(L+ ϵ)k ≤
N∑

k=1

|ak|+
1

1− L− ϵ

by the formula for the sum of a geometric series
∑∞

k=0(1−L−ϵ)−k. This shows that
the partial sums of

∑∞
n=1 |an| are bounded. So

∑∞
n=1 |an| converges. So

∑∞
n=1 an

converges by problem 4(b).

If L > 1, we can choose ϵ > 0 so that L − ϵ > 1. ϵ = (L − 1)/2 is a good choice.
Then we can use the theorem that, when lim supn→∞ |an|1/n = L, for every ϵ > 0
|an|1/n > L− ϵ > 1 infinitely often. So |an| > 1 infinitely often. So

∑∞
n=1 an does

not converge.


