
1. Give the meaning of (= define) the following. In each case {an}∞n=1 is a
sequence of real numbers. Be precise: no partial credit here.

(a) {an}∞n=1 is bounded below.

Definition: {an}∞n=1 is bounded below if and only if there is a B ∈ R such
that an ≥ B for all n.

(b) limn→∞ an = L ∈ R
Definition: limn→∞ an = L ∈ R if and only if for every ε > 0 there is an
N ∈ N such that |an − L| < ε for all n > N .

(c) limn→∞ an = +∞
Definition: limn→∞ an = +∞ if and only if for every M < ∞ there is an
N ∈ N such that an > M for all n > N .

(d) {an}∞n=1 is not a Cauchy sequence.

Definition: {an}∞n=1 is not a Cauchy sequence if and only if for some ε0 > 0
there is no N ∈ N such that |an − am| < ε0 for all n,m > N .

(e) lim sup an, assuming that {an}∞n=1 is bounded above.

Definition: lim sup an = limn→∞ bn where bn = sup{ak : k ≥ n}. [Note
that since {an}∞n=1 is bounded above, bn < ∞. If {an}∞n=1 is not bounded
below, then lim sup an = limn→∞ bn = −∞. This remark is not part of the
definition.]

Discussion: I have written out the definitions in full logical style (with “if
and only if”’s , lots of “such that”’s, and quantifiers in red) because you need
to learn how to write like that. With the quantifiers incorrect or missing,
these definitions degenerate into nonsense. In scoring the exam I wrote
“OK” for answers that gave something equivalent to the property being
defined, but were not what should be used as a definition. For instance, quite
a few people said that a definition for (d) was {an}∞n=1 is not convergent.
That is logically equivalent to not being a Cauchy sequence, but, if you
make it the definition, you end up defining Cauchy sequences as convergent
sequences – which is not very useful.

2. For each sequence below find lim an if it is convergent, and both lim inf an
and lim sup an if it is not. No proofs are necessary.

(a) an = 2n+n3

(−2)n+1

Computation: Dividing the numerator and denominator by (−2)n you
find

an =
(−1)n + n3(−2)−n

1 + (−2)−n

1



2

(−2)−n goes to zero as n → ∞. n3(−2)−n also goes to zero as n → ∞.
If you were asked to prove that you could do it by the ratio test, but you
were not asked to prove it. Hence for n even, i.e. for n = 2m, m ∈ M,
an → 1 and for n odd, i.e. for n = 2m+ 1, an → −1. So lim sup an = 1 and
lim inf an = −1.

(b) an = (n+ 2n)2/n

Computation: Note that an = 22(1 + n2−n)2/n. Since n2−n < 1 for all
n, the argument for problem 13 (b) in the homework shows limn→∞(1 +

n2−n)2/n = 1. So limn→∞ an = 22.

(c) an = 51+(−1)n

Computation: This was the easy one: when n is even an = 52 = 25 and
when n is odd an = 50 = 1. So lim sup an = 25 and lim inf an = 1.

Discussion: In parts (a) and (b) the main trick was algebra: reducing the
quotients in (a) to have a denominator equal to 1 plus a term that goes to

zero, and factoring out 4 in (b) so that you were left with (1+ bn)
2/n where

bn is bounded.

3. In this problem and the next you are asked for proofs of theorems from
this course. Please write these carefully.

Assume that {an}∞n=1 is a sequence of real numbers that is bounded below.
If {an}∞n=1 is a decreasing sequence, prove that {an}∞n=1 is convergent.

Proof: The standard proof goes like this: Since {an}∞n=1 is bounded below,
there is a B ∈ R such that an ≥ B for all n. Hence, by the completeness
axiom the set S = {an : n ∈ N} has a greatest lower bound β. For every ε > 0
β+ ε cannot be a lower bound for S, because β is the greatest lower bound,
so there is an element of S, an0 , satisfying an0 < β + ε. Since β is a lower
bound for S, β ≤ an for all n and, since {an}∞n=1 is decreasing, an+1 ≤ an
for all n. Putting these inequalities together (using the transitivity of ≤)
gives for n > n0

β ≤ an ≤ an0 < β + ε

Setting N = n0 and using the definition of limn→∞ an from problem 1(b),
we have limn→∞ an = β.

4. Assume that {an}∞n=1 is a bounded sequence. Prove that, if lim sup an =
lim inf an, then {an}∞n=1 is convergent.

Proof: The standard proof goes like this: Using problem 1(e), L = lim sup an =
limn→∞ bn where bn = sup{ak : k ≥ n}. So, for every ε > 0 there is an N1

such that bn < L + ε for all n > N1. Likewise, since we are assuming
that lim sup an = lim inf an, we have L = lim inf an = limn→∞ cn where
cn = inf{ak : k ≥ n}. So there is also an N2 such that cn > L − ε for
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all n > N2. Finally, by the definitions of inf and sup, cn ≤ an ≤ bn. So
putting these inequalities together (using the transitivity of ≤) gives for
n > N = max{N1, N2}

L− ε < cn ≤ an ≤ bn < L+ ε.

So by the definition of limn→∞ an from problem 1(b), we have limn→∞ an =
L, proving that {an}∞n=1 is convergent.

5. Use the limit theorems, limn→∞ 1/n = 0, and algebra to compute the
following limits, and prove that your computations are correct.

(a) limn→∞ 3n+n−1

1+2n

Proof: This one is not too hard:

lim
n→∞

3n+ n−1

1 + 2n
= lim

n→∞
3 + n−2

2 + n−1
(algebra)

= (provided that all these limits exist)
3 + (limn→∞ n−1)2

2 + limn→∞ n−1
=

3 + 02

2 + 0
= 3/2.

In that I used limit of the quotient is the quotient of the limits (which
only works because the limit of the denominator is 2 (6= 0)). Also in both
the numerator and the denominator I used limit of the sum is the sum
of the limits (with limn→∞ 3 = 3 and limn→∞ 2 = 2) and finally in the
numerator I used limit of the product is the product of the limits to get
limn→∞ n−2 = (limn→∞ n−1)2.

(b) limn→∞
√
a2n + n2 − n, when limn→∞ an = A ∈ R.

Proof: This one is shorter but less obvious.

lim
n→∞

√
a2n + n2 − n = lim

n→∞
a2n√

a2n + n2 + n
(algebra).

At this point you have to notice that

0 <
a2n√

a2n + n2 + n
<

a2n
n

By limit of the product equals product of the limits

lim
n→∞

a2n
n

= ( lim
n→∞ an)

2( lim
n→∞n−1) = A ·A · 0 = 0.

So by the Squeeze Theorem limn→∞
√
a2n + n2 −n = 0. I forgot to say that

you could use the Squeeze Theorem, but I hope that you used it anyway.


