22W-MATH-131A-LEC-4 Final

TOTAL POINTS

53 / 60

QUESTION 1 Problem 1¹⁰ pts

1.1 2 / 5

 + 1 pts Valid strategy (e.g., showing that \$\$f\$\$ has a continuous extension \$\$\widetilde{f}:[0,1]\to \mathbb{R}\$\$)

 + 1 pts Correct extension for \$\$\widetilde{f}\$\$ (defined \$\$\widetilde{f}(0)=0\$\$)

 + 2 pts Correct proof that \$\$\widetilde{f}\$\$ is continuous at \$\$0\$\$ (need to use squeeze theorem or delta-epsilon definition)

+ 1 pts Coherent proof

 + 1 pts Partially correct proof that \$\$\widetilde{f}\$\$ is continuous at \$\$0\$\$, or gave some of the argument but left out important details

+ 2 Point adjustment

Attempted a proof from definition but made significant errors

1 For \$\$\epsilon\$\$ small this will be negative

 2 You'll want to factor out \$\$x-y\$\$ from all parts, so that it is \$\$|x-y|\$\$ times something else, rather than this

1.2 4 / 5

+ 5 pts Correct

✓ + 4 pts Minor gap or error

- **+ 3 pts** Significant gap or error
- **+ 1 pts** Attempted problem but minimal progress

 3 You should describe how to pick this \$\$x\$\$ explicitly

2 Problem 2 **7 / 10**

Part 1

✓ + 1 pts Correct strategy: aimed to show that

\$\$\lim_{x\to 0} f(x) = f(0)\$\$

- **+ 2 pts** Fully correct proof (e.g., squeeze theorem)
- **✓ + 1 pts Partialy correct proof**

Part 2

✓ + 1 pts Correct strategy: aimed to show that

\$\$\lim_{x\to 0} \frac{g(x)-g(1)}{x-1}\$\$ existed

- **+ 2 pts** Fully correct proof
- **+ 1 pts** Partially correct proof

✓ + 1 pts Claimed that \$\$\lim_{x\in \mathbb{Q}} = \lim_{x\in\mathbb{I}}\$\$ was sufficient for existence of ordinary limit (this is true but not obvious)

Part 3

✓ + 2 pts Correct strategy: demonstrated there is sequence(s) of points in the domain with \$\$x\to 0\$\$ yet tending towards different output values

- **+ 2 pts** Fully correct proof
- **✓ + 1 pts Partially correct proof**
- **4** This inequality is not true for \$\$x\$\$ negative
- **5** Not rigorous

QUESTION 3

3 Problem 3 **10 / 10**

✓ - 0 pts Correct

 - 7 pts Solved problem for specific example rather than in the general case

 - 6 pts Non-rigorous use of infinities (e.g., took a limit in the MVT expression $$f(x)-f(y) = f'(c)(x-y)$ \$ or something similar)

 - 8 pts Invalid proof strategy

QUESTION 4

QUESTION 2

4 Problem 4 **10 / 10**

Parts 1, 2

- **1 pts** Incorrect \$\$M(f, [\frac{k-1}{n}, \frac{k}{n}])\$\$
- **1 pts** Incorrect \$\$m(f, [\frac{k-1}{n}, \frac{k}{n}])\$\$

 - 2 pts Incorrect \$\$U(f, P_n)\$\$ with incorrect

definition

 - 1 pts Incorrect \$\$U(f,P_n)\$\$ but correct definition

 - 2 pts Incorrect \$\$L(f, P_n)\$\$ with incorrect definition

 - 1 pts Incorrect \$\$L(f, P_n)\$\$ but correct definition

Part 3

 - 1 pts Incorrect \$\$\lim_{n\to\infty}U(f, P_n)\$\$

 - 1 pts Incorrect \$\$\lim_{n\to\infty}L(f, P_n)\$\$

Part 4

 - 1 pts Not showing \$\$\lim_{n\to\infty}(U(f,P_n)- $L(f,P_n)=0$ \$\$

 - 1 pts Insufficient / unclear argument to conclude

✓ - 0 pts Correct

QUESTION 5

5 Problem 5 **10 / 10**

Part 1

- **1 pts** Not correctly apply the MVT
- **1 pts** Incorrect argument to conclude

Part 2

 - 1 pts Not correctly apply the EVT to find \$\$x_k,y_k\in [\frac{k-1}{n},\frac{k}{n}]\$\$ such that

\$\$f(x_k)=M, f(y_k)=m\$\$, or something similar

- **1 pts** Not correctly apply Part 1
- **1 pts** Incorrect argument to conclude

Part 3

- **1 pts** Incorrect formula for \$\$U,L\$\$
- **2 pts** Incorrect argument to conclude
- **1 pts** Minor mistake

Part 4

- **1 pts** Not show \$\$\lim_{n\to\infty}(U(f, P_n)- L(f,P_n))=0\$\$ or something similar
	- **1 pts** Incorrect argument to conclude

✓ - 0 pts Correct

QUESTION 6

6 Problem 6 **10 / 10**

Part 1

 - 1 pts \$\$\lim_{h\to 0}\frac{f(h^2)-f(0)}{h^2}\$\$ does not exist

- **1 pts** \$\$f\$\$ is differentiable at \$\$0\$\$
- **1 pts** Incorrect/insufficient/unclear proof

Part 2

 - 1 pts \$\$g\$\$ is integrable / does not have the domain \$\$[0,1]\$\$

- **1 pts** \$\$g^2\$\$ is not integrable
- **1 pts** Incorrect/insufficient/unclear proof

Part 3

 - 1 pts \$\$h\$\$ is continuous at some \$\$x\in \R\$\$

 - 1 pts \$\$h^2\$\$ is not differentiable at some \$\$x\in \R\$\$

 - 1 pts Incorrect/insufficient/unclear proof for discontinuity of \$\$h\$\$

 - 1 pts Incorrect/insufficient/unclear proof for differentiability of \$\$h^2\$\$

✓ - 0 pts Correct

I certify on my honor that I have neither give nor received any help, or used any non-permitted resources, while completing this evaluation. -Trevor Guo

$\mathbf{1}$ Question 1

1. Define a function $f:(0,1) \to \mathbb{R}$ by $f(x) = x^3 \cos(1/x) + x^2 \sin(1/x) + x$. Show that f is uniformly continuous.

We want to show that $\forall \epsilon > 0, \exists \delta > 0$ such that for any $x, y \in (0, 1)$

$$
|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon
$$
\n
$$
|f(x) - f(y)|
$$

$$
= |x3 \cos(1/x) + x2 \sin(1/x) + x - y3 \cos(1/y) - y2 \sin(1/y) - y|
$$

By triangle inequality

$$
\leq |x^3 \cos(1/x) - y^3 \cos(1/y)| + |x^2 \sin(1/x) - y^2 \sin(1/y)| + |x - y|
$$

cos and sin are bounded

$$
-1 \le \cos x, \sin x \le 1
$$

We can select $x, y \in \mathbb{R}$ such that

$$
\cos(1/x) = 1, \cos(1/y) = -1
$$

Then

$$
|x^3 \cos(1/x) - y^3 \cos(1/y)| = |x^3 - (-y^3)| = |x^3 + y^3|
$$

The same could be done to set the equation equal to $|-x^3-y^3|=|x^3+y^3|$ S_o

$$
|x^3 \cos(1/x) - y^3 \cos(1/y)| \le |x^3 + y^3|
$$

For the same reason,

$$
x^2 \sin(1/x) - y^2 \sin(1/y) \le |x^2 + y^2|
$$

Thus

$$
|f(x) - f(y)| \le |x^3 + y^3| + |x^2 + y^2| + |x - y|
$$

Because the domain is $(0, 1)$

$$
|x^3+y^3|<2, |x^2+y^2|<2\\
$$

So

$$
|f(x) - f(y)| < 2 + 2 + \delta = 4 + \delta
$$

Proof. Let $\delta = \epsilon \cdot \mathbf{1}$. Then for $x, y \in (0, 1)$ if $|x - y| < \delta$, we have that $|f(x) - f(y)| < 4 + \delta = \epsilon$. Thus we have proven f is uniformly continuous on $(0, 1)$. POG

2. Define a function $g : \mathbb{R} \to \mathbb{R}$ by $g(x) = -x^3 - x^2 + 1$. Show that g is not uniformly continuous.

Proof. To show that g is not uniformly continuous, we want to show it violates the conditions for uniform continuity. Specifically, there exists an $\epsilon > 0$ such that for each $\delta > 0$, $|x - y| < \delta$ implies $|f(x) - f(y)| > \epsilon$. Fix $\epsilon = 1$, and let $y = x + \frac{\delta}{2}$. We always have that

 $|x - y| = |x - x - \delta/2| = \delta/2 < \delta$

Suppose for contradiction that g is uniformly continuous.

$$
|f(x) - f(y)| = |-x^3 - x^2 + 1 + y^3 + y^2 - 1|
$$

=
$$
\left| 3x^2 \frac{\delta}{2} + 3x(\frac{\delta}{2})^2 + (\frac{\delta}{2})^3 + x\delta + (\frac{\delta}{2})^2 \right| < 1
$$

However, this is a contradiction because we can choose a large enough x such that the expression is greater than 1. Thus g is not uniformly continuous. POG 3

1.1 2 / 5

 + 1 pts Valid strategy (e.g., showing that \$\$f\$\$ has a continuous extension \$\$\widetilde{f}:[0,1]\to \mathbb{R}\$\$)

 + 1 pts Correct extension for \$\$\widetilde{f}\$\$ (defined \$\$\widetilde{f}(0)=0\$\$)

 + 2 pts Correct proof that \$\$\widetilde{f}\$\$ is continuous at \$\$0\$\$ (need to use squeeze theorem or deltaepsilon definition)

 + 1 pts Coherent proof

 + 1 pts Partially correct proof that \$\$\widetilde{f}\$\$ is continuous at \$\$0\$\$, or gave some of the argument but left out important details

+ 2 Point adjustment

Attempted a proof from definition but made significant errors

1 For \$\$\epsilon\$\$ small this will be negative

2 You'll want to factor out \$\$x-y\$\$ from all parts, so that it is \$\$lx-yl\$\$ times something else, rather than this

2. Define a function $g : \mathbb{R} \to \mathbb{R}$ by $g(x) = -x^3 - x^2 + 1$. Show that g is not uniformly continuous.

Proof. To show that g is not uniformly continuous, we want to show it violates the conditions for uniform continuity. Specifically, there exists an $\epsilon > 0$ such that for each $\delta > 0$, $|x - y| < \delta$ implies $|f(x) - f(y)| > \epsilon$. Fix $\epsilon = 1$, and let $y = x + \frac{\delta}{2}$. We always have that

 $|x-y| = |x - x - \delta/2| = \delta/2 < \delta$

Suppose for contradiction that g is uniformly continuous.

$$
|f(x) - f(y)| = |-x^3 - x^2 + 1 + y^3 + y^2 - 1|
$$

=
$$
\left| 3x^2 \frac{\delta}{2} + 3x(\frac{\delta}{2})^2 + (\frac{\delta}{2})^3 + x\delta + (\frac{\delta}{2})^2 \right| < 1
$$

However, this is a contradiction because we can choose a large enough x such that the expression is greater than 1. Thus g is not uniformly continuous. POG 3

1.2 4 / 5

 + 5 pts Correct

✓ + 4 pts Minor gap or error

- **+ 3 pts** Significant gap or error
- **+ 1 pts** Attempted problem but minimal progress

 3 You should describe how to pick this \$\$x\$\$ explicitly

 $\overline{2}$ Question 2

$$
f(x) = \begin{cases} 0 & x \in \mathbb{Q} \\ x^2 - x & x \notin \mathbb{Q} \end{cases}; g(x) = \begin{cases} x^2 + x & x \in \mathbb{Q} \\ 3x - 1 & x \notin \mathbb{Q} \end{cases}; h(x) = \begin{cases} \sin(1/x^2) & x \neq 0 \\ 0 & x = 0 \end{cases}
$$

1. Show that f is continuous at 0

Proof. Want to show that for each $\epsilon > 0$, there exists $\delta > 0$ such that

$$
|x - 0| < \delta \Rightarrow |f(x) - f(0)| < \epsilon
$$

Let $\delta^2 = \epsilon$. Suppose $|x| < \delta$. Then

$$
|f(x) - f(0)| = |x^2 - x - 0| = |x^2 - x|
$$

From our assumption

$$
\boxed{|x^2 - x| \le |x^2| \le \delta^2} = \epsilon
$$

Thus f is continuous at 0

POG

2. Show that g is differentiable at 1

Proof. Want to show that

$$
\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}
$$

exists and is finite. Let's first consider the limit when $x \in \mathbb{Q}$.

$$
\lim_{x \to 1} \frac{x^2 + x - 2}{x - 1} = \lim_{x \to 1} x + 2 = 3
$$

Now consider the limit when $x \notin \mathbb{Q}$.

$$
\lim_{x \to 1} \frac{3x - 1 - 2}{x - 1} = \lim_{x \to 1} \frac{3(x - 1)}{x - 1} = 3
$$

Thus

$$
\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = 3
$$

So it is differentiable at $x = 1$.

3. Show that $\lim_{x\to 0}h(x)$ does not exist.

which does not exist. Thus the $\lim_{x\to 0} h(x)$ does not exist.

POG

2 Problem 2 **7 / 10**

Part 1

- **✓ + 1 pts Correct strategy: aimed to show that \$\$\lim_{x\to 0} f(x) = f(0)\$\$**
	- **+ 2 pts** Fully correct proof (e.g., squeeze theorem)
- **✓ + 1 pts Partialy correct proof**

Part 2

- **✓ + 1 pts Correct strategy: aimed to show that \$\$\lim_{x\to 0} \frac{g(x)-g(1)}{x-1}\$\$ existed**
- **+ 2 pts** Fully correct proof
- **+ 1 pts** Partially correct proof
- **✓ + 1 pts Claimed that \$\$\lim_{x\in \mathbb{Q}} = \lim_{x\in\mathbb{I}}\$\$ was sufficient for existence of ordinary limit (this is true but not obvious)**

Part 3

✓ + 2 pts Correct strategy: demonstrated there is sequence(s) of points in the domain with \$\$x\to 0\$\$ yet tending towards different output values

 + 2 pts Fully correct proof

- **✓ + 1 pts Partially correct proof**
- **4** This inequality is not true for \$\$x\$\$ negative
- **5** Not rigorous

3 Question 3

Let $f : \mathbb{R} \to \mathbb{R}$ be a function that is differentiable everywhere and such that

$$
\lim_{x \to \infty} f'(x) = \infty
$$

Show that f is not uniformly continuous

Proof. We want to show that there exists an $\epsilon > 0$ such that for all $\delta > 0$, and for all $x, y \in \mathbb{R}$, $|x - y| < \delta$ implies $|f(x) - f(y)| > \epsilon$.

Let $\epsilon = 1$, and $y = x + \frac{\delta}{2}$. Thus $|x - y| = \frac{\delta}{2} < \delta$. Because f is differentiable everywhere, it is also continuous everywhere, so we can use the mean value theorem. By the mean value theorem, there exists $c \in (x, y)$ such that $f(y)$ – $f(x) = f'(c)(y - x)$. Because $f'(x)$ is unbounded, we can find $f'(c) > \frac{2}{\delta}$ for large enough (x, y) . Then

$$
|f(y) - f(x)| = |f(x) - f(y)| = |f'(c)||x - y| > \frac{2}{\delta} \cdot \frac{\delta}{2} = 1 = \epsilon
$$

Hence, there exists $|f(x) - f(y)| > 1$ for all $\delta > 0$. Thus f is not uniformly continuous.

3 Problem 3 **10 / 10**

✓ - 0 pts Correct

 - 7 pts Solved problem for specific example rather than in the general case

 - 6 pts Non-rigorous use of infinities (e.g., took a limit in the MVT expression \$\$f(x)-f(y) = f'(c)(x-y)\$\$ or something similar)

 - 8 pts Invalid proof strategy

Question 4 $\overline{4}$

Define function $f:[0,1]\to\mathbb{R}$

$$
f(x) = x^4
$$

1. Compute the upper sum $U(f, P_n)$
Each rectangle has a width of $\frac{1}{n}$. Because x^4 is monotonically increasing
on [0, 1], the upper sum can be calculated with a right hand Riemann sum, given by the expression.

$$
\frac{1}{n}\sum_{k=1}^{n} \left(\frac{k}{n}\right)^4 = \frac{1}{n^5} \sum_{k=1}^{n} k^4
$$

$$
= \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30n^5}
$$

$$
= \frac{6n^5+15n^4+10n^3-n}{30n^5}
$$

2. Compute the lower sum $L(f, P_n)$ We can calculate the lower sum with a left hand Riemann sum.

$$
\frac{1}{n^5}\sum_{k=0}^{n-1} k^4
$$

Because the $k = 0$ term is $0^4 = 0$, we can change the starting index to 1

$$
= \frac{1}{n^5} \sum_{k=1}^{n-1} k^4
$$

$$
= \frac{1}{n^5} \left(\sum_{k=1}^n k^4 - n^4 \right)
$$

$$
= \frac{6n^5 + 15n^4 + 10n^3 - n}{30n^5} - \frac{1}{n}
$$

$$
= \frac{6n^5 + 15n^4 + 10n^3 - n}{30n^5} - \frac{30n^4}{30n^5}
$$

$$
= \frac{6n^5 - 15n^4 + 10n^3 - n}{30n^5}
$$

3. Compute $\lim_{n\to\infty} U(f, P_n)$ and $\lim_{n\to\infty} L(f, P_n)$

$$
\lim_{n \to \infty} U(f, P_n) = \frac{6n^5 + 15n^4 + 10n^3 - n}{30n^5} = \frac{1}{5}
$$

$$
\lim_{n \to \infty} L(f, P_n) = \frac{6n^5 - 15n^4 + 10n^3 - n}{30n^5} = \frac{1}{5}
$$

By limit theorems.

4. Show that f is integrable on $[0,1]$ and we have

$$
\int_0^1 f(x)dx = \frac{1}{5}
$$

Proof. From part 3,

$$
\lim_{n \to \infty} (U(f, P_n) - L(f, P_n)) = \frac{1}{5} - \frac{1}{5} = 0
$$

Thus f is integrable and

$$
\int_0^1 f(x)dx = U(f, P_n) = L(f, P_n) = \frac{1}{5}
$$

4 Problem 4 **10 / 10**

Parts 1, 2

- **1 pts** Incorrect \$\$M(f, [\frac{k-1}{n}, \frac{k}{n}])\$\$
- **1 pts** Incorrect \$\$m(f, [\frac{k-1}{n}, \frac{k}{n}])\$\$
- **2 pts** Incorrect \$\$U(f, P_n)\$\$ with incorrect definition
- **1 pts** Incorrect \$\$U(f,P_n)\$\$ but correct definition
- **2 pts** Incorrect \$\$L(f, P_n)\$\$ with incorrect definition
- **1 pts** Incorrect \$\$L(f, P_n)\$\$ but correct definition

Part 3

- **1 pts** Incorrect \$\$\lim_{n\to\infty}U(f, P_n)\$\$
- **1 pts** Incorrect \$\$\lim_{n\to\infty}L(f, P_n)\$\$

Part 4

- **1 pts** Not showing \$\$\lim_{n\to\infty}(U(f,P_n)-L(f,P_n))=0\$\$
- **1 pts** Insufficient / unclear argument to conclude

✓ - 0 pts Correct

$\overline{5}$ Question 5

1. Show that for all $x, y \in [0, 1]$ we have $|f(x) - f(y)| \leq |x - y|$.

Proof. Assume without loss of generality that $x > y$. Because $\cos x$ is differentiable on $(0, 1)$ and continuous on $[0, 1]$ we can use the mean value theorem. By the mean value theorem, there exists $c \in (y, x)$ such that $\cos x - \cos y = f'(c)(x - y)$. This can be rearranged to

$$
\left|\frac{\cos x - \cos y}{x - y}\right| = |f'(c)|
$$

The derivative of $\cos x$ is $-\sin x$. So

$$
|f'(c)| = |\sin c| \le 1
$$

Thus

$$
\left|\frac{\cos x - \cos y}{x - y}\right| \le 1
$$

Multiply the $|x-y|$ to both sides

$$
|\cos x - \cos y| \le |x - y|
$$

POG

2. Show that for all $k \in \{1, 2, ..., n\}$ we have

$$
M\left(f,\left[\frac{k-1}{n},\frac{k}{n}\right]\right)-m\left(f,\left[\frac{k-1}{n},\frac{k}{n}\right]\right)\leq\frac{1}{n}
$$

Proof. cos x is decreasing and nonnegative on $[0, \frac{\pi}{2}]$. Because $[0, 1] \subset [0, \frac{\pi}{2}]$ it is also decreasing and nonnegative on $[0,1]$. Thus for all k

$$
M\left(f, \left[\frac{k-1}{n}, \frac{k}{n}\right]\right) = \cos\frac{k-1}{n}
$$

$$
m\left(f, \left[\frac{k-1}{n}, \frac{k}{n}\right]\right) = \cos\frac{k}{n}
$$

So we want to show

$$
\cos\frac{k-1}{n} - \cos\frac{k}{n} \le \frac{1}{n}
$$

From part 1,

$$
\left|\cos\frac{k-1}{n}-\cos\frac{k}{n}\right|\leq\left|\frac{k-1}{n}-\frac{k}{n}\right|=\left|\frac{1}{n}\right|
$$

Thus

$$
\cos\frac{k-1}{n}-\cos\frac{k}{n}\leq\frac{1}{n}
$$

POG

3. Show that $U(f, P_n) - L(f, P_n) \leq \frac{1}{n}$

Proof.

$$
U(f, P_n) - L(f, P_n) = \frac{1}{n} \sum_{k=1}^n M\left(f, \left[\frac{k-1}{n}, \frac{k}{n}\right]\right) - \frac{1}{n} \sum_{k=1}^n m\left(f, \left[\frac{k-1}{n}, \frac{k}{n}\right]\right)
$$

$$
= \frac{1}{n} \left(\sum_{k=1}^n \cos \frac{k-1}{n} - \sum_{k=1}^n \cos \frac{k}{n}\right)
$$

$$
= \frac{1}{n} (\cos 0 - \cos 1 + \cos 1 - \cos 2 + \dots + \cos \frac{n-1}{n} - \cos \frac{n}{n})
$$

$$
= \frac{1}{n} (\cos 0 - \cos 1) \le \frac{1}{n}
$$

Because $\cos 0 - \cos 1 = 1 - \cos 1 \leq 1$

POG

4. Show that f is integrable on [0, 1]

Proof. f is integrable $\lim_{n\to\infty} (U(f, P_n) - L(f, P_n)) = 0$. From part 3,

$$
\sum_{n} \sum_{n} U(f, P_n) - L(f, P_n) \leq \frac{1}{n}
$$

If we find the limit of both sides

$$
\lim_{n \to \infty} (U(f, P_n) - L(f, P_n)) \le \lim_{n \to \infty} \frac{1}{n} = 0
$$

Thus $\lim_{n\to\infty}(U(f, P_n) - L(f, P_n))$ is bounded above by 0. Furthermore, $\lim_{n\to\infty}(U(f,P_n)-L(f,P_n))$ is bounded below by 0 because $U(f,P_n)\geq$ $L(f, P_n)$. So by the squeeze theorem, $\lim_{n\to\infty}(U(f, P_n) - L(f, P_n)) = 0$. Thus f is integrable.

5 Problem 5 **10 / 10**

Part 1

- **1 pts** Not correctly apply the MVT
- **1 pts** Incorrect argument to conclude

Part 2

 - 1 pts Not correctly apply the EVT to find \$\$x_k,y_k\in [\frac{k-1}{n},\frac{k}{n}]\$\$ such that \$\$f(x_k)=M, f(y_k)=m\$\$, or something similar

- **1 pts** Not correctly apply Part 1
- **1 pts** Incorrect argument to conclude

Part 3

- **1 pts** Incorrect formula for \$\$U,L\$\$
- **2 pts** Incorrect argument to conclude
- **1 pts** Minor mistake

Part 4

- **1 pts** Not show \$\$\lim_{n\to\infty}(U(f, P_n)-L(f,P_n))=0\$\$ or something similar
- **1 pts** Incorrect argument to conclude

✓ - 0 pts Correct

Question 6 $\boldsymbol{6}$

1. $f(x) = |x|$

$$
\lim_{h \to 0} \frac{f(h^2) - f(0)}{h^2} = \lim_{h \to 0} \frac{|h^2|}{h^2}
$$

Because $|h^2| = h^2$

$$
=\lim_{h\to 0}1=1
$$

However, f is not differentiable at 0

$$
\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{-x}{x} = -1
$$
\n
$$
\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{x}{x} = 1
$$
\n
$$
-1 \neq 1
$$

Thus f is not differentiable

 $2. \ \ g = \begin{cases} 1 & x \in \mathbb{Q} \\ -1 & x \notin \mathbb{Q} \end{cases}$
 First we prove g is not integrable.

Proof. For any partition $P = \{0 = t_0 < t_1 < \cdots < t_n = 1\}$ we have

$$
U(f, P) = \sum_{k=1}^{n} M(f, [t_{k-1}, t_k])(t_k - t_{k-1}) = \sum_{k=1}^{n} 1 \cdot (t_k - t_{k-1}) = 1
$$

$$
L(f, P) = \sum_{k=1}^{n} m(f, [t_{k-1}, t_k])(t_k - t_{k-1}) = \sum_{k=1}^{n} -1 \cdot (t_k - t_{k-1}) = -1
$$

The upper and lower Darboux integrals do not agree, thus g is not integrable. POG

Now we prove $g^2 = \begin{cases} 1 & x \in \mathbb{Q} \\ 1 & x \notin \mathbb{Q} \end{cases} = 1$ is integrable.

Proof.

$$
U(f, P) = \sum_{k=1}^{n} M(f, [t_{k-1}, t_k])(t_k - t_{k-1}) = \sum_{k=1}^{n} 1 \cdot (t_k - t_{k-1}) = 1
$$

$$
L(f, P) = \sum_{k=1}^{n} m(f, [t_{k-1}, t_k])(t_k - t_{k-1}) = \sum_{k=1}^{n} 1 \cdot (t_k - t_{k-1}) = 1
$$

The upper and lower Darboux integrals agree, thus g^2 is integrable. POG

3. $h = \begin{cases} 1 & x \in \mathbb{Q} \\ -1 & x \notin \mathbb{Q} \end{cases}$ First we prove h is discontinuous.

Proof. Let $a \in \mathbb{R}$. If $a \in \mathbb{Q}$, then there exists a sequence (x_n) of irrational numbers by the denseness of irrational numbers such that $\lim x_n = a$. Then $\lim h(x_n) = -1 \neq 1 = h(a)$. Similarly, if $a \notin \mathbb{Q}$, then there exists a sequence (r_n) of rational numbers by the denseness of rational numbers such that $\lim r_n = a$. Then $\lim h(r_n) = 1 \neq -1 = h(a)$. Thus h is discontinuous everywhere. POG

Now we prove h^2 is differentiable everywhere. $h^2=\begin{cases} 1 & x\in \mathbb{Q}\\ 1 & x\notin \mathbb{Q} \end{cases}=1$

Proof. Let $a \in \mathbb{R}$. For h^2 to be differentiable anywhere then,

$$
\lim_{x \to a} \frac{h(x) - h(a)}{x - a}
$$

must exist and be finite. Because $h = 1$

$$
\lim_{x \to a} \frac{h(x) - h(a)}{x - a} = \lim_{x \to a} \frac{1 - 1}{x - a} = 0
$$

Thus h is differentiable everywhere.

6 Problem 6 **10 / 10**

Part 1

- **1 pts** \$\$\lim_{h\to 0}\frac{f(h^2)-f(0)}{h^2}\$\$ does not exist
- **1 pts** \$\$f\$\$ is differentiable at \$\$0\$\$
- **1 pts** Incorrect/insufficient/unclear proof

Part 2

- **1 pts** \$\$g\$\$ is integrable / does not have the domain \$\$[0,1]\$\$
- **1 pts** \$\$g^2\$\$ is not integrable
- **1 pts** Incorrect/insufficient/unclear proof

Part 3

- **1 pts** \$\$h\$\$ is continuous at some \$\$x\in \R\$\$
- **1 pts** \$\$h^2\$\$ is not differentiable at some \$\$x\in \R\$\$
- **1 pts** Incorrect/insufficient/unclear proof for discontinuity of \$\$h\$\$
- **1 pts** Incorrect/insufficient/unclear proof for differentiability of \$\$h^2\$\$

✓ - 0 pts Correct