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This exam contains 8 pages (including this cover page) and 4 problems.

This is exam is open notes, book, and lecture videos. You may not use any other outside resources
on the exam.

You are required to show your work on each problem on this exam. The following rules apply:

• You may use theorems proved in class, unless the
statement of that particular problem instructs oth-
erwise. If you use a theorem proved in class you
must indicate this and explain why the theorem
may be applied.

• Organize your work, in a reasonably neat and co-
herent way, in the space provided. Work scattered
all over the page without a clear ordering will re-
ceive very little credit.

• If you need more space, use the back of the pages;
clearly indicate when you have done this.
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3 10

4 10

Total: 40
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1. Let N×N denote the cartesian product of N with itself; that is, N×N is the set of all ordered
pairs (m,n) where m and n are natural numbers. Define a relation < on N× N by(

(m,n) < (j, k)
)
⇐⇒

(
(m < j) or (m = j and n < k)

)
.

(a) (3 points) Prove that < is an order on N×N (you can refer to the definition of an order
from the lecture notes.)

An order is a relation satisfying the properties of trichotomy and transitivity, and
this is clearly a relation as it is a subset of ordered pairs ((a, b); (c, d)) of N × N
satisfying (a, b) < (c, d).

Trichotomy: Suppose (m,n), (j, k) ∈ N× N. We have the following cases:

1. (m,n) < (j, k); then m < j or m = j and n < k; in either of these subcases
it is not possible that (m,n) ≥ (j, k) by definition of <, since then we require
either m > j or m = j and n ≥ k, and < is itself an order on N and itself
satisfies trichotomy.

2. (m,n) = (j, k); then m = j and n = k; in either of these subcases it is not
possible that (m,n) < (j, k) or (m,n) > (j, k), since then either m < j or
n < k or m > j or n > k, none of which can be satisfied since < is itself an
order on N and itself satisfies trichotomy.

3. (m,n) > (j, k) is analogous to the subcase (m,n) < (j, k).

Transitivity: Suppose (m,n), (j, k), (p, q) ∈ N× N with (m,n) < (j, k) and (j, k) <
(p, q). Then we have two cases, either m < j or m = j and n < k, and similarly we
have two cases for the other inequality; so there are four cases total:

1. m < j and j < p, which using transitivity of < on N implies m < p, so by the
definition of < on N× N we have (m,n) < (p, q);

2. m < j and j = p and k < q, which similarly implies using transitivity again
that m < p, so (m,n) < (p, q);

3. m = j and n < k and j < p, which similarly implies that m < p, so (m,n) <
(p, q);

4. m = j and n < k and j = p and k < q, which similarly implies m = p and
n < q, so (m,n) < (p, q).

(b) (3 points) Prove that if S is any nonempty subset of N × N, then S has a least element:
that is, there exists (m,n) ∈ S such that (m,n) ≤ (j, k) for any (j, k) ∈ S. You may use
the result of Exercise 9 in Homework 1.
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Let A = {x : ∃y((x, y) ∈ S)}; that is, A is the set of all first coordinates of pairs
in S. Then A is nonempty since S is nonempty, so by Exercise 9 in Homework 1 it
has a least element, call this x0. Define B := {y : (x0, y) ∈ S}; then since x0 ∈ A
this is nonempty, so again by Exercise 9 it has a least element, call this y0. Then
(x0, y0) is the least element of S, since for any (m,n) ∈ S we have x0 ≤ m and if
x0 = m, then y0 ≤ n.

(c) (4 points) In this part of the problem, you will prove a variant of mathematical induction
on N× N.

Suppose that P (m,n) is a logical statement depending on (m,n) ∈ N × N. Prove that if
the following three statements hold, then P (m,n) holds for all (m,n) ∈ N× N:

1. P (1, 1) is true;

2. ∀m ∈ N
([
∀n ∈ N(P (m,n))

]
=⇒ P (m+ 1, 1)

)
;

3. ∀(m,n) ∈ N× N
(
P (m,n) =⇒ P (m,n+ 1)

)
.

Here we will iteratively use usual induction on N to prove this statement, which is
known as “lexicographic induction.” Suppose the three properties above hold; we
will show that this implies that P (m,n) holds for all (m,n) ∈ N× N.

Define Q(n) := P (1, n). We claim Q(n) holds for all n. Base case: Q(1) = P (1, 1)
which is assumed to hold by (1). Inductive step: Q(n) =⇒ Q(n+ 1) is equivalent
to P (1, n) =⇒ P (1, n + 1) which follows by (3). By usual induction in N, Q(n)
holds for all n.

Define R(m) := ∀n(P (m,n)). We claim R(m) holds for all m, and once we
prove this we’re done. Base case: R(1) = ∀n(Q(n)), which was just shown
previously. Inductive step: R(m) =⇒ R(m+ 1).

To show the inductive step for R(m), we need to do another induction (an
induction within an induction....sounds like a title for a movie starring Leo
DiCaprio). So suppose R(m) holds. Then by (2), we have that P (m + 1, 1) holds.
Let S(n) := P (m + 1, n); then by usual induction on N, S(n) holds for all n since
the base case n = 1 is already assumed to be true and S(n) =⇒ S(n+ 1) follows
by (3). It follows again by usual induction on N that R(m+ 1) holds.

Thus we have completed the inductive step for R(m) and shown that R(m)
holds for all m, completing the proof.
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2. In what follows let A,B be subsets of the real numbers.

(a) (2 points) Show directly from the definition of supremum that if A ⊂ B, then supA ≤
supB.

Suppose toward a contradiction that supB < supA. Then if x is an upper bound
for A, then by definition of sup we have supB < x, so sup(B) is not an upper bound
for A. This means there exists a ∈ A such that a > sup(B) and hence a > b for all
b ∈ B, contradicting A ⊂ B.

(b) (5 points) We will say that B is dense in A if for any s ∈ A and for any real number
ε > 0, there exists t ∈ B such that |s− t| < ε.

Show that if A is dense in B and B is dense in A, and moreover if supA /∈ A and
supB /∈ B, then supA = supB.

As we’ve shown previously, there exist monotonic increasing sequences {an} and
{bn} converging to supA and supB, respectively, and since supA /∈ A and supB /∈
B, they can be chosen to be strictly monotonic increasing. By denseness, for every
n there is xn ∈ B such that |xn − an| < 1/n. This allows us to inductively choose
a sequence {xn} of elements of B satisfying |xn − an| < 1/n for all n, and since
xn − an → 0 it must converge to supA. It follows that there is xn > supA − ε
for any ε > 0, and hence supB ≥ supA. Reversing the roles of A and B leads to
supA ≥ supB.

(c) (3 points) Let C be the collection of all subsets of the real numbers (this set C is also
known more commonly as the power set of R). Define a relation ∼ on C by

(A ∼ B) ⇐⇒ (A is dense in B).

Is ∼ is an equivalence relation on C? Prove your answer.

This is not an equivalence relation; for instance it fails reflexivity. There are plenty
of counterexamples one could construct, even some finite counterexamples. One
infinite counterexample would be the following: the rationals Q are dense in the
integers Z, but not conversely.
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3. (a) (1 point) State the definition of a sequence diverging to +∞.

A sequence {xn}n≥1 diverges to +∞ if for all real numbers M > 0, there exists a
natural number NM so that whenever n ≥ NM , we have xn > M .

(b) (2 points) Use induction to prove that if a > 0 is an positive real number, then there
exists a natural number Na such that for all n ≥ Na,

log2(n) < na.

Note: this says qualitatively that log(n) grows more slowly than any positive power of n.

Let’s prove this first for a ≥ 1. It suffices for this case to prove a = 1. We know that
there is some value of n for which log2(n) < n; for example n = 2 works. If this is
true for a given n, then log2(n + 1) − log(n) = log2((n + 1)/n) ≤ log2(3/2) < 1,
but (n+ 1)− n = 1, so log2(n+ 1) < n+ 1, proving the inductive step. So we have
shown log2(n) < n for all n sufficiently large.

For any ε > 0, we can also use the above to show that log2(x) < x1+ε for
all sufficiently large real numbers x, since if x is a real number between n and
n+ 1, then log2(x) < log2(n+ 1) < log2(n) + 1 < n+ 1 ≤ n1+ε ≤ x1+ε as long as x
is sufficiently large.

Now let’s prove this for a < 1. Take ε = 1/a in the above, and plug in
x = na in the above. We get a(log2(n)) = log2(n

a) < na+1. Rearranging this yields
log2(n) < n

an
a, and for n sufficiently large this is < na. Done.

(c) (3 points) Prove that if {an}n≥1 is a sequence diverging to +∞, then the sequence

{bn}n≥1, bn := log2(1 + |an|)/an

converges to 0.

Hint: this should be related to what you showed in part b) about log(n) growing more
slowly than any positive power of n.
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Take n sufficiently large so that |an| > M where M is sufficiently large so that
log2(n) < n1/4. for n ≥ M . As above, this implies that log2(x) < x1/2 for all
x sufficiently large. Thus for |an| sufficiently large we have log2(1 + |an)/2|an| <
1/|an|1/2. Since |an| diverges to +∞, we can make |an| sufficiently large by requiring
n sufficiently large. This yields the inequality

0 ≤ log2(1 + |an|)/|an| < 2/|an|1/2

for all n sufficiently large. Since |an| diverges to infinity, the left and right hand
sides both converge to 0 (indeed, take |an| sufficiently large to make 2/|an|1/2 smaller
than any ε > 0), and the result follows by the Squeeze Theorem.

(d) (4 points) Prove that if {an}n≥1 and {bn}n≥1 are sequences such that

an
bn
→ 0,

then there exists a sequence {cn}n≥1 such that

an
cn
→ 0,

cn
bn
→ 0.

Hint: You are looking for a sequence {cn}n≥1 whose behavior is in a sense “in between”
that of {an}n≥1 and {bn}n≥1. Is there a way to use logarithms and the reasoning from
part c) to your advantage?

There are a number of ways to do this. The sequence cn = an(log(1 + |bn/an|))
will work. Indeed, an/cn = 1/(log(1 + |bn/an|)) → 0 since |bn/an| → ∞. (If one
wishes, one can prove carefully the steps an/bn → 0 =⇒ |bn/an| → ∞ =⇒
log(1 + |bn/an|) → ∞ =⇒ an/cn → 0.) One also sees that cn/bn = an(log(1 +
|bn/an|))/bn → 0 by the previous part.
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4. Let us say that a sequence of real numbers {an}n≥1 satisfies Property X if the following holds:

“There exists a real number C ≥ 0 so that for every natural number n ∈ N, there exists a
natural number N(n) so that whenever m ≥ N(n), then |am| ≤ C + n.”

Restated using logical symbols, we can rewrite this as:

∃C ≥ 0( ∀n ∈ N ( ∃N(n) ∈ N [ m ≥ N(n) =⇒ |am| ≤ C + n] ) ).

(a) (1 point) Find the negation of Property X, written in logical symbols.

∀C ≥ 0( ∃n ∈ N ( ∀N ∈ N (∃m ∈ N[ (m ≥ N) ∧ |am| > C + n] )) ).

(b) (2 points) Write down the definition of a bounded sequence as stated in either the notes
or textbook, and then convert this to a statement in logical symbols.

We say that a sequence {an}n≥1 is bounded if there exists C ≥ 0 such that |an| ≤ C
for all n. ∃C ≥ 0(∀n(|an| ≤ C)).

(c) (3 points) Prove that Property X is logically equivalent to the logical statement from part
b).

Property X =⇒ bounded:

Property X =⇒ ∃C ≥ 0(∃N ∈ N [ m ≥ N =⇒ |am| ≤ C + 1] ) ).

=⇒ ∃C ≥ 0 (∀m [|am| ≤ max(|a1|, . . . , |aN |, C + 1)] ) ) =⇒ bounded.

Bounded =⇒ Property X:

∃C ≥ 0(∀n(|an| ≤ C)) =⇒ ∃C ≥ 0[ m ≥ 1 =⇒ |am| ≤ C + 1] =⇒ Property X.

(d) (4 points) We say that a sequence of real numbers {an}n≥1 satisfies Property Y if the
following holds:

“There exists a real number C ≥ 0 such that for every n ∈ N, there exists at least n
many different values of k for which |ak| ≤ C.”

Find an example of a sequence that satisfies Property Y but not Property X (1 point).
Next, prove that every sequence satisfying Property Y has a convergent subsequence (3
points).
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Any unbounded sequence with a convergent subsequence will work; say an = 1 if n
is odd and an = n for n even.

To see that a sequence satisfying Property Y has a convergent subsequence,
first inductively choose a bounded subsequence as follows. Since we know that
every nonempty subset of the natural numbers has a least element, inductively
define kn as follows. Since there is at least one element satisfying |ak| ≤ C,
Take k1 to be the least element of {m : |am| ≤ C}. Supposing we have
constructed k1 < k2 < · · · < kn, define kn+1 to be the minimum of the set
{m : |am| ≤ C,m > kn−1}. This set is nonempty because there are at least kn−1 +1
many elements of the sequence bounded by C.

Thus we have shown that {an} has a bounded subsequence, and by Bolzano-
Weierstrass we may choose a further subsequence that converges; clearly this is
also a subsequence of the original sequence {an}.


