Math 131A

Name: _____

ID Number

Spring 2021 Midterm 1 4/21/21

This exam contains 8 pages (including this cover page) and 4 problems.

This is exam is open notes, book, and lecture videos. You may *not* use any other outside resources on the exam.

You are required to show your work on each problem on this exam. The following rules apply:

- You may use theorems proved in class, unless the statement of that particular problem instructs otherwise. If you use a theorem proved in class you must indicate this and explain why the theorem may be applied.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- If you need more space, use the back of the pages; clearly indicate when you have done this.

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
Total:	40	

1. Let $\mathbb{N} \times \mathbb{N}$ denote the **cartesian product** of \mathbb{N} with itself; that is, $\mathbb{N} \times \mathbb{N}$ is the set of all ordered pairs (m, n) where m and n are natural numbers. Define a relation < on $\mathbb{N} \times \mathbb{N}$ by

 $((m,n) < (j,k)) \iff ((m < j) \text{ or } (m = j \text{ and } n < k)).$

(a) (3 points) Prove that < is an order on $\mathbb{N} \times \mathbb{N}$ (you can refer to the definition of an **order** from the lecture notes.)

An order is a relation satisfying the properties of trichotomy and transitivity, and this is clearly a relation as it is a subset of ordered pairs ((a, b); (c, d)) of $\mathbb{N} \times \mathbb{N}$ satisfying (a, b) < (c, d).

Trichotomy: Suppose $(m, n), (j, k) \in \mathbb{N} \times \mathbb{N}$. We have the following cases:

- 1. (m,n) < (j,k); then m < j or m = j and n < k; in either of these subcases it is not possible that $(m,n) \ge (j,k)$ by definition of <, since then we require either m > j or m = j and $n \ge k$, and < is itself an order on \mathbb{N} and itself satisfies trichotomy.
- 2. (m,n) = (j,k); then m = j and n = k; in either of these subcases it is not possible that (m,n) < (j,k) or (m,n) > (j,k), since then either m < j or n < k or m > j or n > k, none of which can be satisfied since < is itself an order on \mathbb{N} and itself satisfies trichotomy.
- 3. (m,n) > (j,k) is analogous to the subcase (m,n) < (j,k).

Transitivity: Suppose $(m, n), (j, k), (p, q) \in \mathbb{N} \times \mathbb{N}$ with (m, n) < (j, k) and (j, k) < (p, q). Then we have two cases, either m < j or m = j and n < k, and similarly we have two cases for the other inequality; so there are four cases total:

- 1. m < j and j < p, which using transitivity of < on \mathbb{N} implies m < p, so by the definition of < on $\mathbb{N} \times \mathbb{N}$ we have (m, n) < (p, q);
- 2. m < j and j = p and k < q, which similarly implies using transitivity again that m < p, so (m, n) < (p, q);
- 3. m = j and n < k and j < p, which similarly implies that m < p, so (m, n) < (p, q);
- 4. m = j and n < k and j = p and k < q, which similarly implies m = p and n < q, so (m, n) < (p, q).
- (b) (3 points) Prove that if S is any nonempty subset of $\mathbb{N} \times \mathbb{N}$, then S has a least element: that is, there exists $(m, n) \in S$ such that $(m, n) \leq (j, k)$ for any $(j, k) \in S$. You may use the result of Exercise 9 in Homework 1.

4/21/21

Let $A = \{x : \exists y((x, y) \in S)\}$; that is, A is the set of all first coordinates of pairs in S. Then A is nonempty since S is nonempty, so by Exercise 9 in Homework 1 it has a least element, call this x_0 . Define $B := \{y : (x_0, y) \in S\}$; then since $x_0 \in A$ this is nonempty, so again by Exercise 9 it has a least element, call this y_0 . Then (x_0, y_0) is the least element of S, since for any $(m, n) \in S$ we have $x_0 \leq m$ and if $x_0 = m$, then $y_0 \leq n$.

(c) (4 points) In this part of the problem, you will prove a variant of mathematical induction on $\mathbb{N} \times \mathbb{N}$.

Suppose that P(m, n) is a logical statement depending on $(m, n) \in \mathbb{N} \times \mathbb{N}$. Prove that if the following three statements hold, then P(m, n) holds for all $(m, n) \in \mathbb{N} \times \mathbb{N}$:

1. P(1,1) is true; 2. $\forall m \in \mathbb{N}\left(\left[\forall n \in \mathbb{N}(P(m,n))\right] \implies P(m+1,1)\right);$ 3. $\forall (m,n) \in \mathbb{N} \times \mathbb{N}\left(P(m,n) \implies P(m,n+1)\right).$

Here we will iteratively use usual induction on \mathbb{N} to prove this statement, which is known as "lexicographic induction." Suppose the three properties above hold; we will show that this implies that P(m, n) holds for all $(m, n) \in \mathbb{N} \times \mathbb{N}$.

Define Q(n) := P(1, n). We claim Q(n) holds for all n. Base case: Q(1) = P(1, 1) which is assumed to hold by (1). Inductive step: $Q(n) \implies Q(n+1)$ is equivalent to $P(1, n) \implies P(1, n+1)$ which follows by (3). By usual induction in \mathbb{N} , Q(n) holds for all n.

Define $R(m) := \forall n(P(m, n))$. We claim R(m) holds for all m, and once we prove this we're done. Base case: $R(1) = \forall n(Q(n))$, which was just shown previously. Inductive step: $R(m) \implies R(m+1)$.

To show the inductive step for R(m), we need to do another induction (an induction within an induction....sounds like a title for a movie starring Leo DiCaprio). So suppose R(m) holds. Then by (2), we have that P(m + 1, 1) holds. Let S(n) := P(m + 1, n); then by usual induction on \mathbb{N} , S(n) holds for all n since the base case n = 1 is already assumed to be true and $S(n) \implies S(n+1)$ follows by (3). It follows again by usual induction on \mathbb{N} that R(m+1) holds.

Thus we have completed the inductive step for R(m) and shown that R(m) holds for all m, completing the proof.

- 2. In what follows let A, B be subsets of the real numbers.
 - (a) (2 points) Show directly from the definition of supremum that if $A \subset B$, then $\sup A \leq \sup B$.

Suppose toward a contradiction that $\sup B < \sup A$. Then if x is an upper bound for A, then by definition of sup we have $\sup B < x$, so $\sup(B)$ is not an upper bound for A. This means there exists $a \in A$ such that $a > \sup(B)$ and hence a > b for all $b \in B$, contradicting $A \subset B$.

(b) (5 points) We will say that B is **dense** in A if for any $s \in A$ and for any real number $\epsilon > 0$, there exists $t \in B$ such that $|s - t| < \epsilon$.

Show that if A is dense in B and B is dense in A, and moreover if $\sup A \notin A$ and $\sup B \notin B$, then $\sup A = \sup B$.

As we've shown previously, there exist monotonic increasing sequences $\{a_n\}$ and $\{b_n\}$ converging to $\sup A$ and $\sup B$, respectively, and since $\sup A \notin A$ and $\sup B \notin B$, they can be chosen to be strictly monotonic increasing. By denseness, for every n there is $x_n \in B$ such that $|x_n - a_n| < 1/n$. This allows us to inductively choose a sequence $\{x_n\}$ of elements of B satisfying $|x_n - a_n| < 1/n$ for all n, and since $x_n - a_n \to 0$ it must converge to $\sup A$. It follows that there is $x_n > \sup A - \epsilon$ for any $\epsilon > 0$, and hence $\sup B \ge \sup A$. Reversing the roles of A and B leads to $\sup A \ge \sup B$.

(c) (3 points) Let C be the collection of all subsets of the real numbers (this set C is also known more commonly as the **power set** of \mathbb{R}). Define a relation \sim on C by

 $(A \sim B) \iff (A \text{ is dense in } B).$

Is \sim is an equivalence relation on C? Prove your answer.

This is not an equivalence relation; for instance it fails reflexivity. There are plenty of counterexamples one could construct, even some finite counterexamples. One infinite counterexample would be the following: the rationals \mathbb{Q} are dense in the integers \mathbb{Z} , but not conversely.

3. (a) (1 point) State the definition of a sequence diverging to $+\infty$.

A sequence $\{x_n\}_{n\geq 1}$ diverges to $+\infty$ if for all real numbers M > 0, there exists a natural number N_M so that whenever $n \geq N_M$, we have $x_n > M$.

(b) (2 points) Use induction to prove that if a > 0 is an positive real number, then there exists a natural number N_a such that for all $n \ge N_a$,

 $\log_2(n) < n^a.$

Note: this says qualitatively that log(n) grows more slowly than any positive power of n.

Let's prove this first for $a \ge 1$. It suffices for this case to prove a = 1. We know that there is some value of n for which $\log_2(n) < n$; for example n = 2 works. If this is true for a given n, then $\log_2(n+1) - \log(n) = \log_2((n+1)/n) \le \log_2(3/2) < 1$, but (n+1) - n = 1, so $\log_2(n+1) < n+1$, proving the inductive step. So we have shown $\log_2(n) < n$ for all n sufficiently large.

For any $\epsilon > 0$, we can also use the above to show that $\log_2(x) < x^{1+\epsilon}$ for all sufficiently large real numbers x, since if x is a real number between n and n+1, then $\log_2(x) < \log_2(n+1) < \log_2(n) + 1 < n+1 \le n^{1+\epsilon} \le x^{1+\epsilon}$ as long as x is sufficiently large.

Now let's prove this for a < 1. Take $\epsilon = 1/a$ in the above, and plug in $x = n^a$ in the above. We get $a(\log_2(n)) = \log_2(n^a) < n^{a+1}$. Rearranging this yields $\log_2(n) < \frac{n}{a}n^a$, and for n sufficiently large this is $< n^a$. Done.

(c) (3 points) Prove that if $\{a_n\}_{n\geq 1}$ is a sequence diverging to $+\infty$, then the sequence

$$\{b_n\}_{n>1}, \qquad b_n := \log_2(1+|a_n|)/a_n$$

converges to 0.

Hint: this should be related to what you showed in part b) about log(n) growing more slowly than any positive power of n.

Take *n* sufficiently large so that $|a_n| > M$ where *M* is sufficiently large so that $\log_2(n) < n^{1/4}$. for $n \ge M$. As above, this implies that $\log_2(x) < x^{1/2}$ for all *x* sufficiently large. Thus for $|a_n|$ sufficiently large we have $\log_2(1 + |a_n)/2|a_n| < 1/|a_n|^{1/2}$. Since $|a_n|$ diverges to $+\infty$, we can make $|a_n|$ sufficiently large by requiring *n* sufficiently large. This yields the inequality

$$0 \le \log_2(1+|a_n|)/|a_n| < 2/|a_n|^{1/2}$$

for all n sufficiently large. Since $|a_n|$ diverges to infinity, the left and right hand sides both converge to 0 (indeed, take $|a_n|$ sufficiently large to make $2/|a_n|^{1/2}$ smaller than any $\epsilon > 0$), and the result follows by the Squeeze Theorem.

(d) (4 points) Prove that if $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$ are sequences such that

$$\frac{a_n}{b_n} \to 0$$

then there exists a sequence $\{c_n\}_{n\geq 1}$ such that

$$\frac{a_n}{c_n} \to 0, \qquad \frac{c_n}{b_n} \to 0.$$

Hint: You are looking for a sequence $\{c_n\}_{n\geq 1}$ whose behavior is in a sense "in between" that of $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$. Is there a way to use logarithms and the reasoning from part c) to your advantage?

There are a number of ways to do this. The sequence $c_n = a_n(\log(1 + |b_n/a_n|))$ will work. Indeed, $a_n/c_n = 1/(\log(1 + |b_n/a_n|)) \to 0$ since $|b_n/a_n| \to \infty$. (If one wishes, one can prove carefully the steps $a_n/b_n \to 0 \implies |b_n/a_n| \to \infty \implies \log(1 + |b_n/a_n|) \to \infty \implies a_n/c_n \to 0$.) One also sees that $c_n/b_n = a_n(\log(1 + |b_n/a_n|))/b_n \to 0$ by the previous part. 4. Let us say that a sequence of real numbers $\{a_n\}_{n\geq 1}$ satisfies **Property X** if the following holds:

"There exists a real number $C \ge 0$ so that for every natural number $n \in \mathbb{N}$, there exists a natural number N(n) so that whenever $m \ge N(n)$, then $|a_m| \le C + n$."

Restated using logical symbols, we can rewrite this as:

 $\exists C \ge 0 (\forall n \in \mathbb{N} (\exists N(n) \in \mathbb{N} [m \ge N(n) \implies |a_m| \le C + n])).$

(a) (1 point) Find the negation of Property X, written in logical symbols.

 $\forall C \ge 0 (\exists n \in \mathbb{N} (\forall N \in \mathbb{N} (\exists m \in \mathbb{N} [(m \ge N) \land |a_m| > C + n]))).$

(b) (2 points) Write down the definition of a bounded sequence as stated in either the notes or textbook, and then convert this to a statement in logical symbols.

We say that a sequence $\{a_n\}_{n\geq 1}$ is bounded if there exists $C \geq 0$ such that $|a_n| \leq C$ for all n. $\exists C \geq 0 (\forall n(|a_n| \leq C)).$

(c) (3 points) Prove that Property X is logically equivalent to the logical statement from part b).

Property X \implies bounded: Property X $\implies \exists C \ge 0 (\exists N \in \mathbb{N} [m \ge N \implies |a_m| \le C+1])).$ $\implies \exists C \ge 0 (\forall m [|a_m| \le \max(|a_1|, \dots, |a_N|, C+1)])) \implies$ bounded. Bounded \implies Property X: $\exists C \ge 0 (\forall n(|a_n| \le C)) \implies \exists C \ge 0 [m \ge 1 \implies |a_m| \le C+1] \implies$ Property X.

(d) (4 points) We say that a sequence of real numbers $\{a_n\}_{n\geq 1}$ satisfies **Property Y** if the following holds:

"There exists a real number $C \ge 0$ such that for every $n \in \mathbb{N}$, there exists at least n many different values of k for which $|a_k| \le C$."

Find an example of a sequence that satisfies Property Y but not Property X (1 point). Next, prove that every sequence satisfying Property Y has a convergent subsequence (3 points). Any unbounded sequence with a convergent subsequence will work; say $a_n = 1$ if n is odd and $a_n = n$ for n even.

To see that a sequence satisfying Property Y has a convergent subsequence, first inductively choose a bounded subsequence as follows. Since we know that every nonempty subset of the natural numbers has a least element, inductively define k_n as follows. Since there is at least one element satisfying $|a_k| \leq C$, Take k_1 to be the least element of $\{m : |a_m| \leq C\}$. Supposing we have constructed $k_1 < k_2 < \cdots < k_n$, define k_{n+1} to be the minimum of the set $\{m : |a_m| \leq C, m > k_{n-1}\}$. This set is nonempty because there are at least $k_{n-1}+1$ many elements of the sequence bounded by C.

Thus we have shown that $\{a_n\}$ has a bounded subsequence, and by Bolzano-Weierstrass we may choose a further subsequence that converges; clearly this is also a subsequence of the original sequence $\{a_n\}$.