Jochan Jang Math 115AH Final State and prove the Replacement Theorem. Let V be a finite dimensional vector space over a field F and $\mathcal B$ a subset of V. Prove the ℓ following are equivalent: (a) \mathcal{B} is a basis for V. (b) \mathcal{B} is a minimal spanning set for V. (e) B is a maximal linearly independent set for V. $b \rightarrow c$ 3. Let $T:\mathbb{R}^3\to\mathbb{R}^3$ be a counterclockwise rotation by an angle θ in the plane perpendicular to (1,1,2) and $R:\mathbb{R}^3\to\mathbb{R}^3$ be a counterclockwise rotation by an angle φ in the plane perpendicular to (-1,0,1). Find $[R \circ T]_{\mathcal{S}}$ where \mathcal{S} is the standard basis for \mathbb{R}^3 . [You need not multiply out matrices but must compute the necessary inverses.] 4. Let V be a vector spaces over a field F and W_1 and W_2 finite dimensional subspaces. Recall if $S \subset V$, then $S^0 := \{ f \in V^* \mid f(s) = 0 \text{ for all } s \text{ in } S \}$, the annihilator of S. Prove both of the following: $(W_1 + W_2)^0 = W_1^0 \cap W_2^0.$ (b) $(W_1 \cap W_2)^0 = W_1^0 + W_2^0.$ Let V be an n-dimensional vector space over the rational numbers \mathbb{Q} and $T:V\to V$ a linear operator. Suppose that T is nilpotent, i.e., for every v in V there exists a positive integer N such that $T^N v = 0$. Prove the following: (a) If there exists a vector v such that $T^m v = 0$ but $T^{m-1}v \neq 0$, then $\{v, Tv, \ldots, T^{m-1}v\}$ is linearly independent. (b) T is triangularizable. drensson to Let V be a vector space over a field $F, W_i \subset V$ subspaces of $V, i \in I$, and $W = \sum_{i \in I} W_i$. Define what it means for W to be the direct sum of the W_i , $i \in I$. Suppose $T: V \to V$ is a linear transformation and the W_i are distinct eigenspaces of T. Using only the appropriate definitions, (i.e., no theorems, etc.), prove that W is a direct sum of the W_i . (Note there is no finiteness assumptions about anything. If you use any finiteness assumptions, you cannot get full credit.) State and prove the (full) Orthogonal Decomposition Theorem. Let V be the <u>real</u> inner product space of continuous functions with inner product given by $\langle f,g\rangle=\int_0^{2\pi}fg$. Compute the explicit Fourier approximation of f(x)=x+1onto Span $\left(\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\cos(x), \frac{1}{\sqrt{\pi}}\sin(x)\right)$, the usual first three orthonormal Fourier functions. What is the error? You do not have to explicitly compute the error. Let N be a finite dimensional real inner product space and $T:V\to V$ a hermitian of erator. Prove that there exists a unique linear operator $S: V \to V$ such that $T = S^3$. $S = T^*$ Prove Schur's Theorem which says: Let V be a finite dimensional complex vector space and $\mathcal{X}: V \to V$ a linear operator, then there exists an orthonormal basis for V such that [T] is upper triangular. Va tdips/F Let V be a finite dimensional inner product space over a field F and $T: V \to V$ a linear operator. Assume that the adjoint $T^*: V \to V$ exists. Show that T has an eigenvector if and only if T^* has an eigenvector. + (ν,) + (7ν.ν)= (λν.ν) = (ν, λν) 1500 000 of to ber 7 = 50 > 20 ber 7 + 70) I is a root of lear (A-11) = 50 }