Math 115AH	Name:,
Midterm II	Please put your last name first and print clearly
December 5, 2014	
	Signature:
	1
	2
	3
	J
	4
	т
	5
	~·

Extra Credit Problem: _____

You can use the theorems from the book or proved in class, but you should indicate which theorems you are using.

V and W are finite dimensional vector spaces over a field F unless otherwise specified. Both V and W are not the zero vector space. You can assume F is a subfield of C.

 $T:V \to W$ is linear: R(T) is the range of T and N(T) is the null space of T.

1.

a) Define what it means for λ to be an eigenvalue of an operator $T: V \to V$.

b) If V is an inner product space with inner product $\langle \alpha, \beta \rangle$ and W is a subspace of V, define W^{\perp} .

2. Suppose $T: V \to V$ is a linear operator. Suppose $T^3 = 0$ and for some $\alpha \in V$, that $T^2(\alpha) \neq 0$. Show $\alpha, T(\alpha), T^2(\alpha)$ are linearly indpendent.

- 3. Suppose $\alpha_1, \ldots, \alpha_n$ is an orthonormal basis of V and $\alpha, \beta \in V$.
- a) If $\alpha = c_1 \alpha_1 + \ldots + c_n \alpha_n$, how can you express the c_i in terms of the $\langle \alpha, \alpha_i \rangle$?

b) Find a formula for $\langle \alpha,\beta\rangle$ in terms of $\langle \alpha,\alpha_i\rangle$ and $\langle\beta,\alpha_i\rangle$

4. Suppose $T: V \to V$ and $T^n = 0$ for some positive $n \in \mathbb{Z}$. Show that if λ is an eigenvalue of T, then $\lambda = 0$.

5. Suppose $W\subseteq V$ is subspace of an inner product space.

a) Find an inclusion relation between $(W^{\perp})^{\perp}$ and W. Do not assume V is finite dimensional.

b) If V is finite dimensional, show $(W^{\perp})^{\perp} = W$. You can use the theorem about the relationship between dim W, dim W^{\perp} and dim V.

Extra Credit: Suppose V is not necessarily finite dimensional, but $W \subseteq V$ is finite dimensional.

a) Show $V = W + W^{\perp}$. Hint: If $\alpha_1, \alpha_2, \ldots, \alpha_n$ is an orthonormal basis of W, you can define a projection from V to W.

b) What is $(W^{\perp})^{\perp} \cap W^{\perp}$?

c) Show $(W^{\perp})^{\perp} = W$.