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Problem 0.0.1. Let W1 = span{


1
0
1
0
0

 ,


1
1
1
0
0

} and W2 = span{


0
1
0
0
0

 ,


0
1
0
0
1

 ,


0
0
0
1
1

 ,


0
2
0
1
0

}.
Give a basis for W1, W2, W1 ∩W2 and W1 + W2 and calculate dimW1 + dimW2 −
dimW1 ∩W2.

Solution We see that the vectors


1
0
1
0
0

 and


1
1
1
0
0

 are linearly independent

and form a basis for W1. A slightly more convenient basis is given by the two vectors
1
0
1
0
0

 and


0
1
0
0
0

 . On the other hand we have


0
1
0
0
0

−


0
1
0
1
0

 +


0
0
0
1
1

 =


0
2
0
1
0


hence those four don’t form a basis for W2, but the first three are clearly linearly
independent and form a basis. For W1∩W2 we check that the only linear combination

of basis vectors in W2 that is also in W1 are multiples of


0
1
0
0
0

 (this is because the

other basis vectors all have 1’s in places where all vectors in W1 have 0’s). Hence
this one vector is a basis for W1 ∩W2.

For W1 + W2 we use the formula

spanS1 + spanS2 = span(S1 ∪ S2)
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throw out the double vector and see that a basis for it is given by the vectors


1
0
1
0
0

,


0
1
0
0
0

,


0
1
0
1
0

, and


0
0
0
1
1

 . So we get

dimW1 + dimW2 − dimW1 ∩W2 = 2 + 3− 1 = 4 = dim(W1 + W2).

Problem 0.0.2. Show that for a linear transformation T : V → W the nullity N(T )
and the range R(T ) are subspaces of V and W respectively.

Solution This is a Theorem in the book. The proof is also to be found there.

Problem 0.0.3. Prove in the following that T is a linear transformation and give
a basis for N(T ) and R(T ).

• T : R3 → R2 with T (a1, a2, a3) := (a1 − a2, a3).

• T : P2(R)→ P3(R) with T (f(x)) = xf(x) + f ′(x).

Solution For the first part proving linearity is straight-forward. To find the nul-
lity we need to solve T (a1, a2, a3) = 0 for a1, a2 and a3. Inserting the definition yields
a1− a2 = 0 and 2a3 = 0. So the nullity space is the space of all vectors with a1 = a2
and a3 = 0. This is clearly spanned by (1, 1, 0) and hence this one vector is a basis.
Now looking at the rank-nullity theorem I know that the range needs to hae dimen-
sion 2 and hence I get R(T ) = R2 a basis of which is (1, 0) and (0, 1).

For the second part we first check linearity: Let a ∈ R be a scalar and f(x), g(x) ∈
P2(R) polynomials. We have

T (af(x) + g(x)) = axf(x) + xg(x) + af ′(x) + g′(x) = aT (f(x)) + T (g(x))

and T is linear. To find the nullity we solve T (f(x)) = 0. It is helpful to set up
f(x) = a2x

2 + a1x + a0. Then the nullity space is the space of all f(x) where

a2x
3 + a1x

2 + a0x + 2a2x + a1 = 0.

Looking at the coefficients of x3 we get a2 = 0 and then looking at the coefficients of
x2 we get a1 = 0 and finally a0 = 0. Hence N(T ) = 0 and T is one-to-one. Therefor
a the image of a basis of the source is a basis of the range. Since {x2, x, 1} is a basis
for P2(R) we see that {x3 − 2x, x2 − 1, x} is a basis for R(T ).

Problem 0.0.4. Prove Let f(x) ∈ Pn(R) be a polynomial of degree n. Show that
for all g(x) ∈ Pn(R) there exist unique c0, . . . , cn ∈ R such that

g(x) = c0f(x) + c1f
′(x) + . . . + cnf

(n)(x)
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Proof This statement is equivalent to saying that the f(x), f ′(x), . . . f (n)(x) form
a basis of Pn(R). We know that dimPn(R) = n+1 and the f (i)(x)’s are n+1 different
vectors. So it is enough to show that they are linearly independent. Again, it helps to
write f(x) = anx

n+. . .+a0 with an 6= 0. Now we see that f(x) is the only polynomial
of the above that has a nonzero coefficient at xn. So in any linear combination of
the f (i)(x) that yields 0, the coefficient of f(x) must be 0. Moving one down we can
now see that the coefficient of f ′(x) in such a linear combination must also be 0 as
f(x) and f ′(x) are the only two polynomials in our list with a nonzero coefficient
in front of xn−1. Playing this game to all the way down (or, more formally, using
induction) I can prove that those polynomials are linearly independent.
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