MATH 115A SPRING 2021 MIDTERM 1 SOLUTIONS

Problem 1: Let V be a vector space over a field \mathbb{F} .

- (a) Prove that for every $v \in V$ and $a \in \mathbb{F}$, if $av = \vec{0}$, then either a = 0 or $v = \vec{0}$, where 0 is the additive identity in \mathbb{F} and $\vec{0}$ is the additive identity in V.
- (b) Deduce that if there exists a nonzero vector $v \in V$ such that v = -v, then the characteristic of \mathbb{F} is 2.

Solution: We will prove the contrapositive of the statement in part (a). Suppose $a \neq 0$ and $v \neq \vec{0}$. Assume for sake of contradiction that $av = \vec{0}$. Then, since $a \in \mathbb{F}$ is nonzero, there exists a^{-1} such that

$$a^{-1}a = 1.$$

So, we have

$$\vec{0} = a^{-1}(av) = (a^{-1}a)v = v$$

a contradiction. Hence, if both a and v are nonzero, so is av. Hence, by proof by contrapositive, if $av = \vec{0}$, then either a = 0 or $v = \vec{0}$.

For part (b), note that if v = -v, we can add v to both sides of the equation to get $2v = \vec{0}$. Since v is nonzero, by part (a), we must have 2 = 0 in \mathbb{F} . Since the characteristic is the smallest positive integer that is 0 in the field, and $1 \neq 0$, \mathbb{F} must have characteristic 2.

Problem 2: Fix some integer $n \ge 0$ and some field \mathbb{F} . For each *i* from 0 to *n*, let us pick some polynomial $p_i(x)$ in $P_n(\mathbb{F})$ of degree *i*. Prove that

$$\{p_0(x), p_1(x) \dots, p_n(x)\}$$

is a basis for $P_n(\mathbb{F})$.

Solution: Here I provide two solutions. In both methods, we use the fact that $P_n(]\mathbb{F})$ has a standard basis $\{1, \ldots, x^n\}$ and is hence dimension n + 1. Since the given set has size n + 1, we just need to prove it is linearly independent.

In the first proof, we use mathematical induction to prove that $\{p_0, \ldots, p_i\}$ is linearly independent for all $i \ge 0$. The base case of i = 0 is trivial as p_0 is a nonzero constant, as it has degree 0, and $\{p_0\}$ is hence linearly independent. So, assume as inductive hypothesis that $\{p_0, \ldots, p_{i-1}\}$ is linearly independent. p_i is not in the span of $\{p_0, \ldots, p_{i-1}\}$, as these are polynomials of degree < i, while p_i has degree i. Hence,

$$\{p_0,\ldots,p_i\}$$

is also linearly independent.

In the second proof, we use a proof by contradiction. Again, we want to prove $\{p_0, \ldots, p_n\}$ is linearly independent. So, suppose we have a linear relation

$a_0 p_0 + \dots + a_n p_n = 0$

and assume for sake of contradiction that not all of the a_i are 0. Let m be the biggest integer such that $a_m \neq 0$. Then, we can remove the terms involving the higher degree polynomials and get

$$a_0p_0 + \dots + a_mp_m = 0.$$

Now, if $p_m = b_m x^m + \cdots + b_0$, then as it has degree $m, b_m \neq 0$. Hence, in the linear combination

$$a_0p_0 + \cdots + a_mp_m$$

the coefficient of x^m is $a_m b_m$, as the polynomials p_0, \ldots, p_{m-1} have degree < m. Since a_m and b_m are both nonzero, so is $a_m b_m$, which contradicts the relation

$$a_0p_0+\cdots+a_mp_m=0.$$

Hence, $\{p_0, \ldots, p_n\}$ must be linearly independent.

Problem 3: For each of the following problems, either provide the requested example with justification, or prove that it does not exist.

- (a) Four vectors v_1, v_2, v_3, v_4 in \mathbb{R}^4 and a subspace W of dimension 2 of \mathbb{R}^4 such that $\{v_1, v_2, v_3, v_4\}$ is a basis for \mathbb{R}^4 and W does not contain v_1, v_2, v_3, v_4 .
- (b) Two subspaces of \mathbb{R}^4 of dimension 3 whose intersection is the trivial subspace.
- (c) Two subspaces of \mathbb{R}^4 of dimension 2 whose intersection is the trivial subspace.
- (d) A linearly dependent set $\{v_1, v_2, v_3\}$ in \mathbb{R}^3 consisting of three distinct, nonzero vectors v_i such that each v_i is in the span of the other two vectors.

Solution:

(a) Let v_1, v_2, v_3, v_4 be the standard basis vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) respectively. Let W be the subset $\{(x, y, z, w) : x = y, z = w\}$. This is a subspace because if we have two vectors of the form

$$v_1 = (x, x, z, z), v_2 = (x', x', z', z')$$

then, for any $c \in \mathbb{F}$,

$$v_1 + cv_2 = (x + cx', x + cx', z + cz', z + cz') \in W$$

as well. It also dimension 2, as $\{(1, 1, 0, 0), (0, 0, 1, 1)\}$ is a basis for W. Finally, it clearly does not contain any of the standard basis vectors.

(b) Two subspaces of \mathbb{R}^4 of dimension 3 cannot intersect trivially. Suppose for sake of contradiction, that we did have V, W subspaces of \mathbb{R}^4 that intersected in the trivial subspace. Let $\{v_1, v_2, v_3\}$ be a basis for V and $\{w_1, w_2.w_3\}$ be a basis for W. Then, we claim that $\{v_1, v_2, v_3, w_1, w_2, w_3\}$ is linearly independent. If we did have a relation

$$a_1v_1 + a_2v_2 + a_3v_3 + b_1w_1 + b_2w_2 + b_3w_3 = 0$$

with not all the coefficients equal to 0, then we get

 $v = a_1v_2 + a_2v_2 + a_3v_3 = -b_1w_1 - b_2w_2 - b_3w_3 \in V \cap W$

and v cannot be 0 as $\{v_1, v_2, v_3\}$ is linearly independent. This is a contradiction, as we now get a linearly independent subset of \mathbb{R}^4 of size 6.

- (c) Take $V = \text{Span}\{(1,0,0,0), (0,1,0,0)\}$ and $W = \text{Span}\{(0,0,1,0), (0,0,0,1)\}$. Then, V and W have dimension 2 and intersect trivially.
- (d) Take $v_1 = (1,0,0), v_2 = (2,0,0), v_3 = (3,0,0)$. Each vector is a multiple of each of the other two vectors and hence satisfies the desired property.

Problem 4: Let \mathbb{F} be a field and fix some nonzero vector v in \mathbb{F}^5 . Our goal in this problem is to characterize the subspaces of \mathbb{F}^5 that contain v and have dimension 2.

- (a) Let W be a subspace of \mathbb{F}^5 of dimension 2 that contains v. Prove that for any $w \in W$ that is not a scalar multiple of $v, \{v, w\}$ is a basis for W.
- (b) Show that $\{v, w_1\}$ and $\{v, w_2\}$ are bases for the same two-dimensional subspace that contains v if and only if $w_2 = av + bw_1$ for $a, b \in \mathbb{F}$, with $b \neq 0$.

Solution: Let us fix our nonzero vector v.

- (a) Let W be a subspace of dimension 2 containing v. Let $w \in W$ be any vector that is not a scalar multiple of v. Then, w is not in Span $\{v\}$ and hence $\{v, w\}$ is linearly independent. Since W has dimension 2, any linearly independent subset of W of size 2 is a basis. Hence, $\{v, w\}$ is a basis.
- (b) Suppose $\{v, w_1\}$ and $\{v, w_2\}$ are both bases for the same 2-dimensional subspace W. Then, w_2 is in the span of $\{v, w_1 \text{ and hence}\}$

$$w_2 = av + bw_1$$

for some $a, b \in \mathbb{F}$. b cannot be zero as w_2 is not a scalar multiple of v. Conversely, suppose we have $\{v, w_1\}$ a basis for a 2-dimensional subspace W and

$$w_2 = av + bw_1$$

for $a, b \in \mathbb{F}$ with b nonzero. Then, w_2 is in W as well as it is a linear combination of vectors in W. Furthermore, as $\{v, w_1\}$ is linearly independent, w_1 is not a scalar multiple of v. Hence, $\{v, w_2\}$ is linearly independent of size equal to the dimension of W and is hence a basis for W as well.