
MATH 115A SPRING 2021 MIDTERM 1 SOLUTIONS

Problem 1: Let V be a vector space over a field F.

(a) Prove that for every v ∈ V and a ∈ F, if av = ~0, then either a = 0 or v = ~0, where 0 is the

additive identity in F and ~0 is the additive identity in V .

(b) Deduce that if there exists a nonzero vector v ∈ V such that v = −v, then the characteristic of

F is 2.

Solution: We will prove the contrapositive of the statement in part (a). Suppose a 6= 0 and v 6= ~0.

Assume for sake of contradiction that av = ~0. Then, since a ∈ F is nonzero, there exists a−1 such that

a−1a = 1.

So, we have

~0 = a−1(av) = (a−1a)v = v

a contradiction. Hence, if both a and v are nonzero, so is av. Hence, by proof by contrapositive, if

av = ~0, then either a = 0 or v = ~0.

For part (b), note that if v = −v, we can add v to both sides of the equation to get 2v = ~0. Since v

is nonzero, by part (a), we must have 2 = 0 in F. Since the characteristic is the smallest positive integer

that is 0 in the field, and 1 6= 0, F must have characteristic 2.

Problem 2: Fix some integer n ≥ 0 and some field F. For each i from 0 to n, let us pick some

polynomial pi(x) in Pn(F) of degree i. Prove that

{p0(x), p1(x) . . . , pn(x)}

is a basis for Pn(F).

Solution: Here I provide two solutions. In both methods, we use the fact that Pn(]F) has a standard

basis {1, . . . , xn} and is hence dimension n+ 1. Since the given set has size n+ 1, we just need to prove

it is linearly independent.

In the first proof, we use mathematical induction to prove that {p0, . . . , pi} is linearly independent for

all i ≥ 0. The base case of i = 0 is trivial as p0 is a nonzero constant, as it has degree 0, and {p0} is hence

linearly independent. So, assume as inductive hypothesis that {p0, . . . , pi−1} is linearly independent. pi

is not in the span of {p0, . . . , pi−1}, as these are polynomials of degree < i, while pi has degree i. Hence,

{p0, . . . , pi}

is also linearly independent.

In the second proof, we use a proof by contradiction. Again, we want to prove {p0, . . . , pn} is linearly

independent. So, suppose we have a linear relation
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a0p0 + · · ·+ anpn = 0

and assume for sake of contradiction that not all of the ai are 0. Let m be the biggest integer such that

am 6= 0. Then, we can remove the terms involving the higher degree polynomials and get

a0p0 + · · ·+ ampm = 0.

Now, if pm = bmxm + · · ·+ b0, then as it has degree m, bm 6= 0. Hence, in the linear combination

a0p0 + · · ·+ ampm

the coefficient of xm is ambm, as the polynomials p0, . . . , pm−1 have degree < m. Since am and bm are

both nonzero, so is ambm, which contradicts the relation

a0p0 + · · ·+ ampm = 0.

Hence, {p0, . . . , pn} must be linearly independent.

Problem 3: For each of the following problems, either provide the requested example with justifica-

tion, or prove that it does not exist.

(a) Four vectors v1, v2, v3, v4 in R4 and a subspace W of dimension 2 of R4 such that {v1, v2, v3, v4}
is a basis for R4 and W does not contain v1, v2, v3, v4.

(b) Two subspaces of R4 of dimension 3 whose intersection is the trivial subspace.

(c) Two subspaces of R4 of dimension 2 whose intersection is the trivial subspace.

(d) A linearly dependent set {v1, v2, v3} in R3 consisting of three distinct, nonzero vectors vi such

that each vi is in the span of the other two vectors.

Solution:

(a) Let v1, v2, v3, v4 be the standard basis vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) respec-

tively. Let W be the subset {(x, y, z, w) : x = y, z = w}. This is a subspace because if we have

two vectors of the form

v1 = (x, x, z, z), v2 = (x′, x′, z′, z′)

then, for any c ∈ F,

v1 + cv2 = (x + cx′, x + cx′, z + cz′, z + cz′) ∈W

as well. It also dimension 2, as {(1, 1, 0, 0), (0, 0, 1, 1)} is a basis for W . Finally, it clearly does

not contain any of the standard basis vectors.

(b) Two subspaces of R4 of dimension 3 cannot intersect trivially. Suppose for sake of contradiction,

that we did have V,W subspaces of R4 that intersected in the trivial subspace. Let {v1, v2, v3}
be a basis for V and {w1, w2.w3} be a basis for W . Then, we claim that {v1, v2, v3, w1, w2, w3}
is linearly independent. If we did have a relation
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a1v1 + a2v2 + a3v3 + b1w1 + b2w2 + b3w3 = 0

with not all the coefficients equal to 0, then we get

v = a1v2 + a2v2 + a3v3 = −b1w1 − b2w2 − b3w3 ∈ V ∩W

and v cannot be 0 as {v1, v2, v3} is linearly independent. This is a contradiction, as we now get

a linearly independent subset of R4 of size 6.

(c) Take V = Span{(1, 0, 0, 0), (0, 1, 0, 0)} and W = Span{(0, 0, 1, 0), (0, 0, 0, 1)}. Then, V and W

have dimension 2 and intersect trivially.

(d) Take v1 = (1, 0, 0), v2 = (2, 0, 0), v3 = (3, 0, 0). Each vector is a multiple of each of the other

two vectors and hence satisfies the desired property.

Problem 4: Let F be a field and fix some nonzero vector v in F5. Our goal in this problem is to

characterize the subspaces of F5 that contain v and have dimension 2.

(a) Let W be a subspace of F5 of dimension 2 that contains v. Prove that for any w ∈ W that is

not a scalar multiple of v, {v, w} is a basis for W .

(b) Show that {v, w1} and {v, w2} are bases for the same two-dimensional subspace that contains v

if and only if w2 = av + bw1 for a, b ∈ F, with b 6= 0.

Solution: Let us fix our nonzero vector v.

(a) Let W be a subspace of dimension 2 containing v. Let w ∈W be any vector that is not a scalar

multiple of v. Then, w is not in Span{v} and hence {v, w} is linearly independent. Since W has

dimension 2, any linearly independent subset of W of size 2 is a basis. Hence, {v, w} is a basis.

(b) Suppose {v, w1} and {v, w2} are both bases for the same 2-dimensional subspace W . Then, w2

is in the span of {v, w1 and hence

w2 = av + bw1

for some a, b ∈ F. b cannot be zero as w2 is not a scalar multiple of v. Conversely, suppose we

have {v, w1} a basis for a 2-dimensional subspace W and

w2 = av + bw1

for a, b ∈ F with b nonzero. Then, w2 is in W as well as it is a linear combination of vectors

in W . Furthermore, as {v, w1} is linearly independent, w1 is not a scalar multiple of v. Hence,

{v, w2} is linearly independent of size equal to the dimension of W and is hence a basis for W

as well.
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