
Take Home Midterm and Homework #7

Instructions: This homework/midterm is open book. All proofs must be fully written or
typed out. You may not cut and paste solutions that you did not write or type yourself. If
you copy part of or the whole proof from a reference you must cite that reference when used
on that problem. If results not proven in class or homework are used, you must prove these
also. You may not help each other or have others help solve the problems for you.

In the problems below, in which V is an inner product space you may assume that F
equal to R or C (but you cannot assume which one unless it is given) with inner product
〈 , 〉V .

Problem 1. Let V be an inner product space. Prove that d : V × V → R defined by
d(v, w) = ||v − w|| makes V into a metric space, i.e., for all v, w, x ∈ V , d satisfies all of
the following:

(a) d(v, w) ≥ 0 and equals zero if and only if v = w.

(b) d(v, w) = d(w, v).

(c) (Triangle Inequality) d(v, w) ≤ d(v, x) + d(x,w).

Problem 2. Let V be a finite dimensional inner product space with an orthonormal basis
{v1, ..., vn}. Let v, w ∈ V . Prove Parseval’s Formula:

〈v, w〉 =
n∑

i=1

〈v, vi〉〈w, vi〉.

In particular, the Pythagorean Theorem holds, viz.,

||v||2 =
n∑

i=1

|〈v, vi〉|2.

Problem 3. Suppose that V is the direct sum V = W1 ⊕W2 of vector spaces over F with
F = R or C. If Wi is an inner product space via 〈 , 〉Wi

, i = 1, 2, show that there is a
unique inner product 〈 , 〉V on V satisfying

(a) W2 = W⊥
1 .

(b) 〈x, y〉V = 〈x, y〉Wi
, for x, y ∈ Wi, i = 1, 2.

Problem 4. Let V be a finite dimensional vector space over F (so F is any field) and
T : V → V a linear operator.

(a) Show that there exists a positive integer N and a0, a1, . . . , aN in F not all zero such
that aNT

N + aN−1T
N−1 + · · · + a1T + a01V is the zero linear operator, i.e., if f =

aN t
N + aN−1t

N−1 + · · ·+ a1t+ a0, then f(T ) = 0.

(b) Show that there is a unique monic polynomial q ∈ F [t] satisfyingl q(T ) = 0 and if
g ∈ F [t] is any polynomial satisfying g(T ) = 0, then q divides g in F [t], i.e., g = qh for
some h ∈ F [t]. (You may use the Division Algorithm without proving it.)



Problem 5. Let F be a field and A ∈Mn(F ).

(a) Suppose that A is an upper triangular matrix (i.e., Aij = 0 for all i < j) with Aii = 0,
for i = 1, . . . , n. Prove that An = 0.

(b) Suppose that F = C and λ1, . . . , λk are all the distinct roots of the characteristic polyno-
mial fA ∈ F [t] of A. Show that A is similar to an upper triangular matrix with diagonal
entries ordered with all the λ1’s coming first on the diagonal, followed by all the λ2’s along
the diagonal, etc. (So the diagonal entries look like λ1, . . . , λ1, λ2, . . . , λ2, . . . , λk, . . . , λk.)

(c) Let T : V → V be a linear operator on a finite dimensional complex vector space. Prove
that fT (T ) = 0.

(d) (Extra Credit) Let F be an arbitrary subfield of C and T : V → W a linear transforma-
tion of finite dimensional vector spaces over F . Prove that qT | fT in F [t], where qT is
the minimal polynomial of T defined in Problem 4.

Problem 6. Let T : V → W be a linear transformation of finite dimensional inner product
spaces of the same dimension.

(a) Show the following are equivalent:
(i) 〈T (v1), T (v2)〉W = 〈v1, v2〉V for all v1, v2 ∈ V . We say that T preserves the inner

product.

(ii) T is an isomorphism of vector spaces preserving inner products. We say that T is
an isometry.

(iii) T takes every ON basis of V to an ON basis of W .

(iv) T takes some ON basis of V to an ON basis of W .

(v) ||Tv|| = ||v|| for every v ∈ V .

(b) Show two finite dimensional inner product spaces over F are isometric (i.e., there exists
an isometry between them) if and only if they have the same dimension.

Problem 7. Let V and W be finite dimensional inner product spaces with orthonormal
bases B = {v1, ..., vn} and C = {w1, ..., wm}, respectively. Let T : V → W and S : W → V be
two linear transformations. Suppose that A = [T ]B,C ∈ Fm×n and B = [S]C,B ∈ F n×m and are
viewed as linear transformations of inner product spaces F n×1 → Fm×1 and Fm×1 → F n×1,
respectively via the dot product (with Sn,1 and Sm,1 the respective standard bases). Then
show all of the following (where (A∗)ij = Aji for all i, j) :

(a) 〈T (vi), wj〉W = Aji = Aei · ej and 〈vi, S(wj)〉V = (B∗)ji = ei · Bej for all 1 ≤ i ≤ n and
1 ≤ j ≤ m.

(b) There exists a unique linear transformation T ∗ : W → V such that [T ∗]C,B = A∗ and it
satisfies

〈T (vi), wj〉W = 〈vi, T ∗(wj)〉V for i = 1, . . . , n and j = 1, . . . ,m.

(c) The linear transformation T ∗ : W → V in (b) satisfies

(*) 〈Tv, w〉W = 〈v, T ∗w〉V for all v ∈ V and w ∈ W.

(d) T ∗ is the unique linear transformation satisfying (*). T ∗ is called the adjoint of T .

(e) T ∗∗ := (T ∗)∗ = T .



Problem 8. Let A ∈Mn(F ) be a matrix whose columns form an ON basis for F n×1 under
the dot product. Show A is invertible and the inverse of A is A∗.

Problem 9. Under the conditions and notation of Problem 7, show both of the following:

(a) T ∗T is hermitian.

(b) 〈T ∗Tv, v〉V is a non-negative real number for all v ∈ V .

Problem 10. Let V be a finite dimension inner product space and W a subspace of V . We
know that V = W ⊥ W⊥, i.e., if v ∈ V , then there exist unique w ∈ W and w⊥ ∈ W⊥

satisfying v = w + w⊥.

(a) Let T : V → V be the linear operator satisfying v = w + w⊥ 7→ w − w⊥. Prove that T
is both hermitian and an isometry. (See Problem 6 for the definition of an isometry.)

(b) Let T : V → V be a linear operator that is both hermitian and an isometry. Show that
there exists a subspace W of V such that T (v) = w−w⊥ where v = w+w⊥ with w ∈ W
and w⊥ ∈ W⊥.


