Math 115AH Final

Rules: This is a closed book exam. You cannot use notes, books, the web, other people for help. You have until 8:00 AM PST Friday 19 March 2021 to upload your answers into the appropriate boxes on gradescope. In the first box in gradescope you must enter I followed all the rules, and then sign it.

- 1. State and prove the Counting Theorem.
- 2. Let V be a nonzero finite dimensional vector space over a field F and $\mathcal B$ a subset of V. Prove the following are equivalent:
	- (a) β is a basis for V.
	- (b) Among all spanning sets for V, the set \mathcal{B} is a minimal one.
	- (c) Among all linearly independent sets in V, the set \mathcal{B} is a maximal one.
- 3. Let V and X be finite dimensional vector spaces over F and $T: V \to X$ a linear transformation. Prove both of the following:
	- (a) If W is a subspace of V, then $V = \dim W + \dim W^0$.
	- (b) dim im $T = \dim \text{im } T^t$ where T^t is the transpose of T.

[Recall that the *annihilator* of W is defined by $W^0 := \{ f \in V^* \mid f(x) = 0 \text{ for all } x \in W \}.$]

- 4. State and prove the Universal Property of Vector Space (UPVS) (the Existence of Linear Transformations) without a finite dimensional assumption. [You can assume that all vector spaces have bases.]
- 5. Let V be a non-zero vector space over F (not necessarily finite dimensional), W_1, W_2 subspaces of V satisfying V is the direct sum $V = W_1 \oplus W_2$, and $P_i : V \to V$ the linear operator defined by $v \mapsto w_i$ in V if $v = w_1 + w_2$, with $w_i \in W_i$, for $i = 1, 2$.

Let $T: V \to V$ be a linear operator. Prove that W_i , $i = 1, 2$, are both T-invariant if and only if $TP_i = P_iT$ for both $i = 1, 2$.

[You may assume that for each $v \in V$, there exist unique $w_i \in W_i$, $i = 1, 2$, satisfying $v = w_1 + w_2.$

6. Let V be a non-zero finite dimensional vector space over F and $T: V \to V$ a linear operator. Let $q_T \in F[t]$ be the minimal polynomial of T (the polynomial that you proved existed on Problem 4 of the Takehome). Prove that q_T and the characteristic polynomial f_T have the same roots in F.

[You cannot use the Cayley-Hamilton Theorem.]

- 7. State and prove the Approximation Theorem.
- 8. Let V be a finite dimensional complex inner product space and $T: V \to V$ an arbitrary linear operator. Let $\lambda \in \mathbb{C}$. Show that λ is an eigenvalue of T if and only if λ is an eigenvalue of T^* .
- 9. State and prove Schur's Theorem.
- 10. Let $T: V \to V$ be an hermitian operator with V a finite dimensional real or complex inner product space. We call the hermitian operator T a non-negative operator if $\langle Tv, v \rangle \geq 0$ for all $v \in V$. Prove both of the following:
	- (a) There exists a non-negative operator $S: V \to V$ satisfying $S^2 = T$, i.e., T has a square root.
	- (b) The non-negative operator S in (a) is unique.