$MIDTERM$ 1 Math115A

Nadja Hempel 04/23/2020 nadja@math.ucla.edu

Name: UID:

ATTENTION: Axiom 4 of the vector space can be used in the following way:

For all $v \in V$, we have that

$$
v+(-v)=0
$$

Exercise 1. Let V be a vector space over R. Show that for all $v, w \in V$ and $\lambda \in \mathbb{R}$, we have that

$$
\lambda(v + (-w)) + \lambda((-v) + w) = 0
$$

(You should only use the axioms of a vector space and that for all $\lambda \in \mathbb{R}$ we have that $\lambda \cdot 0 = 0$. For each step state CLEARLY which axiom or result you are using.)

ATTENTION: Do NOT use $\lambda(-v) = -(\lambda v)$

Exercise 2. Let V be a vector space and assume that $(v_1, v_2, v_3, v_4, v_5) \in V^5$ is linearly independent. Show that

$$
(v_1 + v_2, v_1 + 2v_2 + v_3, v_3 + 2v_4, 2v_4 + (-4)v_5, v_1 + (-2)v_5) \in V^5
$$

is also linearly independent.

Math 115A Midterm 1

JAMES WANG

TOTAL POINTS

12 / 12

QUESTION 1

1 Vector space axioms **7 / 7**

- **✓ + 1 pts Axiom 1 correctly**
- **✓ + 1 pts Axiom 2 correctly**
- **✓ + 1 pts Axiom 3 correctly**
- **✓ + 1 pts Axiom 4 correctly**
- **✓ + 1 pts Brackets correctly**
- **✓ + 1 pts Use lambda 0=0 correctly**
- **✓ + 1 pts Axiom 7 correctly**
	- **+ 7 pts** Correct
	- **+ 0.5 pts** Brackets not all correct

QUESTION 2

- **2** Linear independence **5 / 5**
	- **✓ + 1 pts Setup**
	- **✓ + 1 pts Rearrangement of linear combination**
	- **✓ + 1 pts Application of linear independence**
	- **✓ + 1 pts System of equations**
	- **✓ + 1 pts Statement of conclusion**

H James Wary Midtern 105 205 655 Exercise 1: WTS that $\lambda (v + (-w)) + \lambda ((-v) + w) = 0$ $\lambda (V + (-\omega)) + \lambda ((-V) + \omega) = (\lambda V + \lambda (-\omega)) + (\lambda (-V) + \omega \lambda \omega)$ $ax₂$ $((\lambda v + \lambda(-\omega)) + \lambda(-v)) + \lambda w \stackrel{a+1}{=} (\lambda(-v) + (\lambda v + \lambda(-w)) + \lambda w$ αx 2 $((\lambda(-v) + \lambda v) + \lambda(-w)) + \lambda w \stackrel{ax}{=} (\lambda((-v)+v) + \lambda(-w)) + \lambda w$ \overline{z} AX I $(\lambda(v + (-\omega)) + \lambda(-w)) + \lambda w$ ax4
($\lambda(v) + \lambda(-w) + \lambda(w)$) $(0+x(-w)) + \lambda w$ (x^3)
 $(\lambda(v) + \lambda w)$ (x^3)
 $\lambda(v) = 0$
 $\lambda(v) = 0$
 $\lambda(v) = 0$
 $\lambda(w + (-w))$
 $\lambda(w) = 2$
 $\lambda(w + (-w))$
 $\lambda(w) = 2$
 $\lambda(w + (-w))$
 $\lambda(w) = 2$
 $\lambda(w + (-w))$ 4.000 **ax 4** WTS that $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5 \in \mathbb{Z}$ such that $\lambda_1 (v_1 + v_2) + \lambda_2 (v_1 + 2v_2 + v_3) + \lambda_3 (v_1 + 2v_4) + \lambda_4 (2v_1 + (-4)v_5 + \lambda_5 (v_1 + (-2)v_5) = 0$ only when $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = 0$ flavrange int $(\lambda_1 + \lambda_2 + \lambda_5)v_1 + (\lambda_1 + 2\lambda_2)v_2 + (\lambda_2 + \lambda_3)v_3 + (\lambda_3 + 2\lambda_4)v_4 + (-4\lambda_4 - 2\lambda_5)v_5 = 0$ Since we know $(v_1, v_2, v_3, v_4, v_5)$ is linearly independent. $\lambda_1 + \lambda_2 + \lambda_5 = 0$ ω λ_1 + $2\lambda_2$ = 0 \circledcirc - \circledcirc gives $\lambda_2 - \lambda_5 = 0$... \circledcirc \circledB \Rightarrow 2. 3-4 gives $2\lambda_{2}-2\lambda_{4}=0...$ $\lambda_2 + \lambda_3 = 0$ \circledcirc $2\lambda_5 + 2\lambda_4 = 0$ \circledcirc \circledast and \circledast give $\lambda_{u}=\lambda_{s}$. \circledast $-4\lambda_{1}$ = $2\lambda_{5}$ = 0 $\textcircled{5}$ plugging \circledcirc into \circledcirc -4 λ_{4} -2 λ_{4} = 0 \Rightarrow λ_{4} = 0, λ_{5} = 0 plugging $\lambda_4 = 0$ into (f) $2\lambda_2 - 2(0) = 0 \implies \lambda_2 = 0$ $\int |v_{55}|^{1/5} \lambda_2 = 0$ 11to 3 0 + $\lambda_3 = 0$ = $\lambda_3 = 0$ plussing $\lambda_2 = \lambda_5 = 0$ into $\overline{0}$ d+0+0=0 => A, = 0 Thus $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = 0$ and $(v_1 + v_2, v_1 + 2v_2 + v_3, v_3 + 2v_1, 2v_4 + (-u)v_5, v_1 + (-2)v_5)$ is linearly independent

h

 \triangleright **TN** $\overline{}$

T T

 $\overline{\mathbf{v}}$

 $\overline{\mathbf{v}}$

 $\overline{\mathbf{v}}$

 $\overline{\mathbf{z}}$

 $\overline{\mathbf{u}}$

 $\overline{\mathcal{L}}$

 $\overline{}$

Ń

Ð

Đ

9

1 Vector space axioms **7 / 7**

- **✓ + 1 pts Axiom 1 correctly**
- **✓ + 1 pts Axiom 2 correctly**
- **✓ + 1 pts Axiom 3 correctly**
- **✓ + 1 pts Axiom 4 correctly**
- **✓ + 1 pts Brackets correctly**
- **✓ + 1 pts Use lambda 0=0 correctly**
- **✓ + 1 pts Axiom 7 correctly**
	- **+ 7 pts** Correct
	- **+ 0.5 pts** Brackets not all correct

James Wary Midtern 105 205 655 Exercise 1: WTS that $\lambda (v + (-w)) + \lambda ((-v) + w) = 0$ $\lambda(v+(-w)) + \lambda((-v) + w) = (\lambda v + \lambda(-w)) + (\lambda(-v) + w \lambda w)$ $ax₂$ $((\lambda v + \lambda(-\omega)) + \lambda(-v)) + \lambda w \stackrel{a\lambda}{\rightarrow} (\lambda(-v) + (\lambda v + \lambda(-\omega))) + \lambda\dot{w}$ $\triangle\lambda$ 2 $((\lambda(-v) + \lambda v) + \lambda(-w)) + \lambda w \stackrel{4\lambda + 7}{=} (\lambda(-v) + v) + \lambda(-w)) + \lambda w$ \overline{z} AX I $(\lambda(v + (-\omega)) + \lambda(-\omega)) + \lambda\omega \stackrel{\alpha x}{=} (\lambda(0) + \lambda(-\omega)) + \lambda\omega$ $\ddot{ }$ $(0 + \lambda(-\omega)) + \lambda \omega = \frac{a_{x}3}{\lambda(-\omega) + \lambda \omega} = \frac{a_{x}7}{\lambda(-\omega) + \omega} = \lambda (\omega + (-\omega))$ $A - 0 = 0$ $\lambda (0) = 0$ **ax 4** Exercise 2: WTS that $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5 \in \mathbb{Z}$ such that $\lambda_1 (v_1 + v_2) + \lambda_2 (v_1 + 2v_2 + v_3) + \lambda_3 (v_3 + 2v_4) + \lambda_4 (2v_4 + (-4)v_5 + \lambda_5 (v_1 + (-2)v_5) = 0$ only when $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = 0$ flavrange int $(\lambda_1 + \lambda_2 + \lambda_5)v_1 + (\lambda_1 + 2\lambda_2)v_2 + (\lambda_2 + \lambda_3)v_3 + (\lambda_3 + 2\lambda_4)v_4 + (-4\lambda_4 - 2\lambda_5)v_5 = 0$ Since we know (v,, v2, v3, v4, v5) is linearly independent. $\lambda_1 + \lambda_2 + \lambda_5 = 0$ ω $\lambda_1 + 2\lambda_2 = 0$ \circledcirc - \circledcirc gives $\lambda_2 - \lambda_5 = 0$... \circledB \Rightarrow 2. 3 - 4 gives $2\lambda_{2}-2\lambda_{4}=0.$ \circledcirc $\lambda_2 + \lambda_3 = 0$ $2\lambda_5 + 2\lambda_4 = 0$ \circledcirc 6 and 4 give $\lambda_{4} = \lambda_{5} ... 8$
plugging 0 into 5 - 4 $\lambda_{4} = 2\lambda_{4} = 0 \implies \lambda_{4} = 0$, $\lambda_{5} = 0$ $-4\lambda_{4}-2\lambda_{5}$ = 0 \textcircled{f} plugging $\lambda_4 = 0$ into (1) $2\lambda_2 - 2(0) = 0 \implies \lambda_2 = 0$ $\n *plus* 33113 *λ*2 = 0 \n *in* 6\n *0* 0 + *λ*3 = 0 \n *λ*3 = 0\n *λ*3 = 0\n *λ*4 = 0\n *λ*1 = 0$ Thus $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = 0$ and $(v_1 + v_2, v_1 + 2v_2 + v_3, v_3 + 2v_1, 2v_4 + (-u)v_5, v_1 + (-2)v_5)$ is linearly independent

H

 \mathbf{r}

to **I** \mathbf{H}

T T

 $\overline{\mathbf{v}}$

 \overline{b}

 $\overline{\mathbf{v}}$

 $\overline{\mathbf{z}}$

 $\overline{\mathbf{C}}$

 $\overline{\mathbf{v}}$

 $\overline{}$

ń

4 3

Ð

Đ

9

2 Linear independence **5 / 5**

- **✓ + 1 pts Setup**
- **✓ + 1 pts Rearrangement of linear combination**
- **✓ + 1 pts Application of linear independence**
- **✓ + 1 pts System of equations**
- **✓ + 1 pts Statement of conclusion**