
Math 115A - Winter 2019

Exam 2 - Solutions

Full Name:

UID:

Instructions:

• Read each problem carefully.

• Show all work clearly and circle or box your final answer where
appropriate.

• Justify your answers. A correct final answer without valid reasoning
will not receive credit.

• All work including proofs should be well organized and clearly
written using complete sentences.

• You may use the provided scratch paper, however this work will
not be graded unless very clearly indicated there and in the exam.

• Calculators are not allowed but you may have a 3× 5 inch notecard.
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1. (10 points) True or False: Prove or disprove the following statements.

(a) Let S, T : V → V be linear operators on a finite-dimensional vector space. Assume
that S and T commute, i.e. that ST = TS. If v is an eigenvector of T such that
S(v) 6= 0, then S(v) is also an eigenvector of T .

(b) Let A be an n × n matrix with v and w two eigenvectors of A. Then v + w is an
eigenvector of A.

Solution:

(a) True.

Proof. Let v ∈ V be an eigenvector of T with eigenvalue λ and assume that
S(v) 6= 0. Then by commutativity

T (S(v)) = TS(v) = ST (v) = S(λv).

But S is linear, so S(λv) = λS(v). Thus S(v) is an eigenvector for T with
eigenvalue λ.

(b) False. In general, v and w may be two eigenvectors with distinct eigenvalues.
In particular, suppose

A =

(
1 0
0 2

)
so that v = e1 = (1, 0) and w = e2 = (0, 1) are eigenvectors with eigenvalues
λ = 1 and µ = 2, respectively. Then v + w = (1, 1) but

A =

(
1 0
0 2

)[
1
1

]
=

[
1
2

]
,

and (1, 2) is not a scalar multiple of v + w = (1, 1).
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2. (10 points) Let T : V → V be a linear operator on a finite-dimensional vector space V .

(a) Suppose T n = 0 for some n. Prove that the only eigenvalue of T is zero.

(b) Show that T 2 = 0 if and only if imT ⊆ kerT .

Solution:

(a) Proof. Suppose that λ is an eigenvalue of T . Then there exists a nonzero vector
v ∈ V such that T (v) = λv. Now applying T n to v we have

0 = T n(v) = T (T (· · ·T (v))) = λnv.

Since v 6= 0, it must be that λn = 0. But then λ = 0.

(b) Proof. (=⇒) Suppose that T 2 = 0. Let w ∈ imT . Then there exists some
v ∈ V such that T (v) = w. Now since T 2 = 0 we have

0 = T 2(v) = T (T (v)) = T (w),

so w ∈ kerT . Thus imT ⊆ kerT .

(⇐=) Now suppose imT ⊆ kerT . Let v ∈ V be arbitrary. If we call w = T (v),
since imT ⊆ kerT we know T (w) = 0. Now apply T 2 to v to get

T 2(v) = T (T (v)) = T (w) = 0.

Since v ∈ V was arbitrary, T 2(v) = 0 for all v. Hence T 2 = 0.
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3. (10 points) True or False: Prove or disprove the following statements.

Consider the linear operator T : R[x]→ R[x] given by T (f(x)) = f ′(x) + f(0).

(a) The linear operator T is one-to-one.

(b) The linear operator T is onto.

Solution:

(a) False. We will show T is not one-to-one by showing that kerT 6= {0}. Consider
the polynomial f(x) = x− 1 ∈ R[x]. Now compute

T (f(x)) = f ′(x) + f(0) = 1 + (−1) = 0

so f(x) = x− 1 ∈ kerT but f(x) 6= 0. Hence T is not one-to-one.

(b) True.

Proof. It suffices to show that every element in the standard basis for R[x] given
by β = {1, x, x2, . . . } is contained imT . Notice that

xn = T

(
xn+1

n+ 1

)
for all n ≥ 0. So every basis element of β is in imT and T is onto.
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4. (10 points) Let V = M2×2(R) and W = P3(R). Let

β =

{
w1 =

(
1 0
0 0

)
, w2 =

(
0 1
0 0

)
, w3 =

(
0 0
1 0

)
, w4 =

(
0 0
0 1

)}
and

γ = {1, x, x2, x3}

be the standard bases. Consider the linear map T : V → W defined by

T

(
a b
c d

)
= ax3 + (c− b+ 2d)x2 + 2(c+ d)x+ (c+ d).

(a) Determine
[
T
]γ
β
.

(b) Prove that although V ∼= W , the map T is not an isomorphism. (Hint: The proof
that V ∼= W should be one line.)

Solution:

(a) We need to express T (w1), T (w2), T (w3), T (w4) in the γ basis. So we compute

T (w1) = T

(
1 0
0 0

)
= x3

T (w2) = T

(
0 1
0 0

)
= −x2

T (w3) = T

(
0 0
1 0

)
= x2 + 2x+ 1

T (w4) = T

(
0 0
0 1

)
= 2x2 + 2x+ 1

Collecting up the coefficients we have

[T ]γβ =


0 0 1 1
0 0 2 2
0 −1 1 2
1 0 0 0

 .

(b) Proof. Observe that V ∼= W by the dimension theorem, since both V and W
have dimension 4. So there exists an isomorphism V → W , however T is not an
isomorphism. We can see clearly by explicit computation of the determinant,
or because the first and second rows of the matrix above are scalar multiples of
each other, that det[T ]γβ = 0. Thus the matrix [T ]γβ is not invertible. Hence the
linear operator T is not invertible and so not an isomorphism.
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