Math 115A Quiz 3

William Wang

November 27, 2020

Problem 1. Honor Statement.

I certify on my honor that I have neither given nor received any help, or used any non-permitted resources, while completing this evaluation.

Problem 2.

(a) Does the set $\{(1, 1, 4, 5), (8, 2, 0, 0), (-1, 6, 2, 3)\}$ generate \mathbb{R}^4 ? Justify your answer.

Solution. No, because the set only has 3 vectors and \mathbb{R}^4 has dimension 4. Any generating set must contain at least 4 vectors. \Box

(b) Is the set $\{1+x^2, 1+x, x-x^2, 1\}$ linearly independent in $P_2(\mathbb{R})$? Justify your answer.

Solution. No, because the set has 4 vectors and $P_2(\mathbb{R})$ only has dimension 3. Any linearly independent set must contain at most 3 vectors. \Box

(c) Does the set $\left\{ \begin{pmatrix} 1 & 5 \\ -2 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \right\}$ $0 \quad i$ $\left\{ \begin{pmatrix} 0 & 1 \\ -2 & 0 \end{pmatrix} \right\}$ span the complex vector space $M_{2\times2}(\mathbb{C})$? Justify your answer.

Solution. No, because the set only has 3 vectors and $M_{2\times2}(\mathbb{C})$ has dimension 4. Any spanning set must contain at least 4 vectors. \Box

Problem 3. Let V be a vector space and let $v_1, \ldots, v_k, v \in V$. Define $W_1 = \text{span}\{v_1, \ldots, v_k\}$ and $W_2 =$ $\text{span}\{v_1,\ldots,v_k,v\}$. Prove that v can be written as a linear combination of the vectors v_1,\ldots,v_k if and only if $\dim(W_1) = \dim(W_2).$

Proof. Notice that W_1 is a subset of W_2 . In particular, let $u = a_1v_1 + \cdots + a_kv_k$ be a vector in W_1 for $a_1, \ldots, a_k \in \mathbb{F}$. Then u is also in W_2 as the linear combination

$$
a_1v_1+\cdots+a_kv_k+0v
$$

where $0 \in \mathbb{F}$ is the additive scalar identity.

We first prove in the forward direction. Suppose v can be written as a linear combination of the vectors v_1, \ldots, v_k , specifically $b_1v_1 + \cdots + b_kv_k$ for $b_1, \ldots, b_k \in \mathbb{F}$. We want to prove that W_2 is a subset of W_1 . Any vector $w \in W_2$ can be written as a linear combination

$$
c_1v_1 + \cdots + c_kv_k + cv
$$

for $c_1, \ldots, c_k \in \mathbb{F}$.

Plugging in our expression for v:

$$
c_1v_1 + \dots + c_kv_k + c(b_1v_1 + \dots + b_kv_k) = (c_1 + cb_1)v_1 + \dots + (c_k + cb_k)v_k
$$

Hence w is a linear combination of v_1, \ldots, v_k and thus in W_1 . Since both subspaces are subsets of each other, they are equal. It follows that $\dim(W_1) = \dim(W_2)$.

Next, we prove in the backward direction. Suppose $\dim(W_1) = \dim(W_2)$. Since W_1 is a subset of W_2 , which is itself a vector space, we can say that W_1 is a subspace of W_2 . From Theorem 1.11, we have that $W_1 = W_2$; in particular, $v \in W_2$ must also be in W_1 . By definition of span, v is a linear combination of v_1, \ldots, v_k . П

Problem 4. Let V be a vector space with finite dimensional subspaces W₁ and W₂. Prove that dim(W₁ ∩ W₂) \leq $\dim(W_1)$.

Proof. From Theorem 1.4, we have that $W_1 \cap W_2$ is a subspace of V, so dim($W_1 \cap W_2$) is well-defined. $W_1 \cap W_2$ is furthermore a subset of W_1 , which is itself a vector space, so $W_1 \cap W_2$ is a subspace of W_1 . From Theorem 1.11, we have that $\dim(W_1 \cap W_2) \leq \dim(W_1)$.

Problem 5. Let U denote the subspace of $M_{3\times3}(\mathbb{F})$ consisting of upper triangular 3×3 matrices. Find a basis for U (make sure to prove your choice is actually a basis). What is $\dim(U)$?

Solution. Let 0, 1 be the additive and multiplicative identities of $\mathbb F$ respectively. A basis for U is

$$
\left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}
$$

To see why, let v_1, \ldots, v_6 be the individual matrices as ordered above. Notice that the upper triangular matrices of $M_{3\times3}(\mathbb{F})$ are defined as

$$
\begin{pmatrix} a_1 & a_2 & a_3 \ 0 & a_4 & a_5 \ 0 & 0 & a_6 \end{pmatrix}
$$

for arbitrary field elements $a_1, \ldots, a_6 \in \mathbb{F}$. This is also the linear combination $a_1v_1 + \cdots + a_6v_6$. Furthermore, this is unique since each scalar influences a separate element of the matrix. Hence $\{v_1, \ldots, v_6\}$ is a basis of U. The size of a vector space's basis is its dimension, so $\dim(U) = 6$. □

Problem 6. Suppose T is a function $T : \mathbb{R}^2 \to \mathbb{R}^2$ with $T((2,6)) = (2,-2)$ and $T((1,3)) = (1,-5)$. Is it possible that T is a linear map? Why or why not?

Proof. It is impossible for T to be a linear map. As a linear transformation, $T(cx) = cT(x)$ must hold for all $x \in V, c \in \mathbb{F}$. Notice that $(2, 6) = 2 \cdot (1, 3)$, yet $(2, -2) \neq 2 \cdot (1, -5)$. Hence T does not satisfy the requirement. \Box