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Problem 1. Honor Statement.

I certify on my honor that I have neither given nor received any help, or used any non-permitted
resources, while completing this evaluation.

Problem 2. Let V be a vector space over a field F. Prove that a subset W is a subspace if and only if W 6= ∅ and
for all a, b ∈ F and x, y ∈W , the linear combination ax + by is also in W .

Proof. Let W be a subset of V satisfying the properties above. Since W is non-empty, we can take vectors x, y ∈W
(not necessarily distinct). Notice that the zero vector 0 ∈ V is a linear combination of x and y, specifically
0x + 0y = 0 + 0 = 0 where 0 ∈ F is the field’s additive identity. Hence W contains the zero vector.

Next, for any scalar a ∈ F, ax is a linear combination of x and y, specifically ax + 0y = ax + 0 = ax. Hence W
is closed under scalar multiplication.

Finally, x + y is a linear combination of x and y, specifically 1x + 1y = x + y where 1 ∈ F is the field’s
multiplicative identity. Hence W is closed under vector addition. By Theorem 1.3, W is a subspace of V .

Problem 3. Let

M1 =

(
−1 0
0 0

)
,M2 =

(
0 1
1 0

)
,M3 =

(
0 0
0 −1

)
Prove the span of {M1,M2,M3} is the subspace of M2×2(R) consisting of all symmetric 2× 2 matrices.

Proof. By definition, a 2× 2 matrix is of the form (
a1 a2
a2 a3

)
where a1, a2, a3 ∈ R. This is also the linear combination −a1M1 + a2M2 − a3M3, so the set of all symmetric 2× 2
matrices is a subset of the span of {M1,M2,M3}. The latter is also a subset of the former, since for all a1, a2, a3 ∈ R
the linear combination a1M1 + a2M2 + a3M3 is the symmetric matrix(

−a1 a2
a2 −a3

)
Hence the two sets are exactly equal. Call it W ; we will prove it is a subspace of M2×2(R). First notice that

the the zero vector 0 ∈M2×2(R) (
0 0
0 0

)
is a symmetric matrix, so W contains it. Next, the sum of two symmetric matrices is also symmetric, so W is closed
under addition: (

a1 a2
a2 a3

)
+

(
b1 b2
b2 b3

)
=

(
a1 + b1 a2 + b2
a2 + b2 a3 + b3

)

1



Finally, the scaling of a symmetric matrix is also symmetric, so W is closed under scalar multiplication:

c

(
a1 a2
a2 a3

)
=

(
ca1 ca2
ca2 ca3

)
By Theorem 1.3, W is a subspace of M2×2(R).

Problem 4. Determine if the set {1 − 3x2 + 5x3, 1 − x2 + 2x3, 1 + 3x2 − 4x3} is linearly independent or linearly
dependent in P3(R). Justify your answer.

Proof. We want to determine if there exists a non-zero linear combination of the three polynomials which gives 0,
the zero vector in P3(R). Using Gaussian elimination where each column is a polynomial and the rows represent
coefficients of the monomials 1, x2, x3: 1 1 1

−3 −1 3
5 2 −4

→
1 1 1

0 2 6
0 −3 −9

→
1 0 −2

0 1 3
0 0 0


This gives us one possible tuple of coefficients (2,−3, 1) among others. We can verify that 2(1− 3x2 + 5x3)− 3(1−
x2 + 2x3) + 1(1 + 3x2 − 4x3) = 0. By definition, the set is linearly dependent.

Problem 5. Recall the set of diagonal matrices in M3×3(R) is a subspace. Find a linearly independent set that
spans this subspace (make sure to justify your answer!).

Proof. One such set consists of the following matrices:

M1 =

1 0 0
0 0 0
0 0 0

 ,M2 =

0 0 0
0 1 0
0 0 0

 ,M3 =

0 0 0
0 0 0
0 0 1


By definition, a 3× 3 diagonal matrix is of the forma1 0 0

0 a2 0
0 0 a3


where a1, a2, a3 ∈ R. This is also the linear combination a1M1 + a2M2 + a3M3. Hence the span of {M1,M2,M3}
is the set of diagonal matrices in M3×3(R). Next, notice that the zero vector in M3×3(R) is0 0 0

0 0 0
0 0 0


This is only equal to the linear combination a1M1 + a2M2 + a3M3 when a1, a2, a3 = 0, the trivial solution. By
definition, the set {M1,M2,M3} is linearly independent.

Problem 6. Let V be a vector space over a field F and suppose U and W are subspaces. Recall we can define the
set

U + W = {x + y : x ∈ U, y ∈W}

Prove that U + W is a subspace of V .

Proof. First, notice that the zero vector 0 ∈ V is in both U and W . Hence the sum 0 + 0 = 0 is also in U + W .
Next, for any two vectors x1 + y1, x2 + y2 ∈ U + W where x1, x2 ∈ U, y1, y2 ∈ W , notice that x1 + x2 ∈ U and

y1 + y2 ∈ W , since both are subspaces. By definition, (x1 + x2) + (y1 + y2) ∈ U + W . By commutativity and
associativity, this is equal to (x1 + y1) + (x2 + y2), so U + W is closed under vector addition.

Finally, for any scalar c ∈ F and vector x + y ∈ U where x ∈ U, y ∈ W , notice that cx ∈ U and cy ∈ W , since
both are subspaces. By definition, cx+ cy ∈ U +W . By distributivity of scalar multiplication over vector addition,
this is equal to c(x + y), so U + W is closed under scalar multiplication. By Theorem 1.3, U + W is a subspace of
V .
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