Problem 1: Let F3 be the field F3 = {0,1,2} with multiplication and /
addition given by a + b = (a + b)mod3 and ab = (ab)mod3. Let V be the
vector space over F3 consisting of all ordered pairs (a,b) where a and b are both
elements of F3.

Let S be the subset of V given by S = {(0,0),(2,1),(1,2)}. Show that S is
a subspace of V.
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Problem 2: Let F be a field, let V and W be vector spaces over F, and_‘let
T :V — W be a linear transformation. Suppose that the zero vector in V, 0, is
the only element of ker(T). Show that T is injective (one-to-one).

(Hint: Let u,v be vectors in V with T'(u) = T'(v), and then show that u = v.)
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Problem 3: (a) Suppose that F is a field in which 1+1 = 0. Show that
every element of F is its own additive inverse.
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(b) There is a field F with four elements: F = {b,'l, a;b}. In this field,
1+1 = 0. Fill out these tables showing what addition and multiplication do, in
F. (So since 0+ 0 = 0, there should be a 0 in the upper left corner of the first
table, for example. This is a tricky puzzle, but there is enough information to

fill the tables out completely.) iy o \.y
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Problem 4: (a) Let X be the set of even integers, and let Y be the set of
—_ integers which are multiples of 3. Find a bijection f: X =Y.
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(b) Let X be the set of all positive integers, X = {n € Z|n > 0}, and let ¥’
be the set of all ordered triples of positive integers, Y = {(a,b,¢,)|a,b,c € X}.
So Y includes the points (2,7,10), (8,3,8), and (11,11, 11), for example.
Describe a bijection from X to Y. You don’t need to give an explicit formula,
and drawing pictures is encouraged.
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