Math 115A — Midterm 2

There are four problems
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Problem 1:

a: (2 points) Suppose that {v1,v,} is a basis for R?, and that T : R? — R?
is a linear transformation with T'(v1) = 3v; — v2, and with T'(vz) = 2v;. What
is the matrix for T, with respect to the basis {v1,v2}7
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b: (4 points) Let 7' : R?> — R? be the linear transformation given by
T([z,3]) = [~y,z). Consider the basis for R? given by {[2,1],[1,2]}. What is
the matrix for T, with respect to this basis?
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c: (4 points) Let T : R® — R3 be the linear transformation given by
reflection through the z =

z plane. Find a basis {v1,va,vs} such that the
matrix for T' with respect to this basis is a diagonal matrix.
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Problem 2: Suppose that A is a 4 x 4 matrix with real entries, and that

the first column is a linear combination of the other three. Use the properties

of determinants (given on the last page o of this exam) to show that this matrix
has determinant 0.
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Problem 3: Let V be a finite dimensional vector space over a field F, and let
T .V — V be a linear transformation represented by a matrix A. Suppose that
) is an eigenvalue for 7. Show that A is a root of the characteristic polynomial

x(t) = Det(A — tI), where I is the identity matrix.
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Problem 4: Let V be an inner product space over R, with inner product
< _,. >. Let U be a three-dimensional subspace of V, with an orthonormal
l D basis {u1,u2, ug}. The orthogonal projection onto U is the linear transformation
T :V — V defined by T(v) =< u1,v > u1+ < u2,v > ug+ < usz,v > ug. Ifa
vector w is in the kernel of this transformation, show that w is orthogonal to
every vector in U.
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Properties of determinants:
1) The determinant of the identity matrix is 1.

2) If A is a square matrix, and B is the matrix obtained from A after
multiplying one column by a real number k, then Det(B) = kDet(A4).

3) If A is a square matrix, and B is the matrix obtained from A by switching
two columns, then Det(B) = —Det(A).

4) Suppose that A, B and C are square matrices, the same except for their
ith columns. If the ith column of A is v, the ith column of B is v, and the ith
column of C is v+ v', then Det(C) = Det(4) + Det(B). ;



