Math 115A – Midterm 2

There are four problems of

30/40

Problem 1:

a: (2 points) Suppose that $\{v_1, v_2\}$ is a basis for \mathbb{R}^2 , and that $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation with $T(v_1) = 3v_1 - v_2$, and with $T(v_2) = 2v_1$. What is the matrix for T, with respect to the basis $\{v_1, v_2\}$?

b: (4 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by T([x,y]) = [-y,x]. Consider the basis for \mathbb{R}^2 given by $\{[2,1],[1,2]\}$. What is the matrix for T, with respect to this basis?

$$T((2,1)) = (-1,2) = T((1,2)) = (-2,1) = (-2,1)$$

c: (4 points) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by reflection through the x=z plane. Find a basis $\{v_1, v_2, v_3\}$ such that the matrix for T with respect to this basis is a diagonal matrix.

$$T(N_1) = dV_1 + 6 + 6$$

 $T(N_2) = 0 + pm + 0$
 $T(N_3) = 0 + 0 + 8V_3$

$$T((6)) = 1(6) + o(6) + o(6)$$

$$T((6)) = o(6) + o(6) + o(6)$$

$$T((6)) = o(6) + o(6) + o(6)$$

Problem 2: Suppose that A is a 4×4 matrix with real entries, and that the first column is a linear combination of the other three. Use the properties of determinants (given on the last page of this exam) to show that this matrix has determinant 0.

Problem 3: Let V be a finite dimensional vector space over a field F, and let $T: V \to V$ be a linear transformation represented by a matrix A. Suppose that λ is an eigenvalue for T. Show that λ is a root of the characteristic polynomial $\chi(t) = \text{Det}(A - tI)$, where I is the identity matrix.

 $\chi(t) = Det(A - tI)$. Show $\chi(x) = 0$

Conclusion?

Problem 4: Let V be an inner product space over \mathbb{R} , with inner product < -, - >. Let U be a three-dimensional subspace of V, with an orthonormal basis $\{u_1,u_2,u_3\}$. The orthogonal projection onto U is the linear transformation $T:V\to V$ defined by $T(v)=< u_1,v>u_1+< u_2,v>u_2+< u_3,v>u_3$. If a vector w is in the kernel of this transformation, show that w is orthogonal to every vector in U.

7(w)=0= <u,,w>a, 1 (u2, w>u2 + (u3, w)u3 so the scalars (u, u) =0 (u2, W)=0 (u3, w)=0 So wis athroad to each of the Lade vectors of us Any redor x & U can be sprented as knew combo of a, uz, uz (x,w) = (xu,w> + (puz, w)x(8uz)w) = / (u, u) + B (uz, w)+8(uz, w) = X 0 + 6 0 So was orthogonal to all veders in U.

Properties of determinants:

- 1) The determinant of the identity matrix is 1.
- 2) If A is a square matrix, and B is the matrix obtained from A after multiplying one column by a real number k, then Det(B) = kDet(A).
- 3) If A is a square matrix, and B is the matrix obtained from A by switching two columns, then Det(B) = -Det(A).
- 4) Suppose that A, B and C are square matrices, the same except for their *i*th columns. If the *i*th column of A is v, the *i*th column of B is v', and the *i*th column of C is v + v', then Det(C) = Det(A) + Det(B).