Midterm 1

- 1. Each of the following questions has exactly one correct answer. Choose from the four options presented in each case. No partial points will be given.
 - (a) (1 point) In the vector space $\mathbb{C}[x]$, the set $\{x^2 x, x^2 + 1\}$ is
 - A. linearly dependent
 - B linearly independent
 - C. a spanning set
 - D. none of the above

$$(\chi_{3}^{*}\chi) + \mu(\chi_{3}^{*}\chi) = 0.$$

The following two questions concern the subsets

concern the subsets

$$U = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \middle| a^2 + b^2 = c \right\} \subseteq \mathbb{R}^3 \qquad \begin{array}{c} \text{if } \lambda \neq b \\ p(x), q(x) \notin V. \\ p(x) \neq q(x) \end{bmatrix} (1) = p(x) \neq q(x) \\ y(x) \notin V. \\ p(x) \neq q(x) \end{bmatrix} (1) = p(x) \neq q(x) \\ y(x) \notin V. \\ y(x) \# V. \\ y(x)$$

for some choice of $\lambda \in \mathbb{R}$. Recall that $\mathbb{R}_2[x]$ is the space of polynomials of degree at most 2.

- (b) (1 point) Which of the following is a true statement?
 - A. Both U and V are subspaces regardless of the value of $\lambda \in \mathbb{I}$

C. V is a subspace for any λ . D. Only V is a subspace when $\lambda = 0$. $a + b = \lambda$ $a + b = \lambda$ a, a, $(a, + a_3)^2 + (b + b_3)^2$. a + b = ka + b. a(kx) + b = ka + b. a(x+1) + b = 2a + b = 0(c) (1 point) When $\lambda = 0$, the subsection of the subsect

4/1

B. 2
C. 3
D. 4

$$-a = b + C.$$

 $p = -b - c + ba + c \lambda^{2}$
 $= b(x - 1) + c(x - 1)$
 $dim = \lambda$
 $a + b = 0.$
 $a + b = 0.$
 $a \times -a.$ $(X - 1)$

Midterm 1

- (d) (1 point) Let U and W be two, finite dimensional subspaces of a vector space V. Which of the following statements is true?
 - A. We must have $U \cap W = \{0\}$.
 - B. If $U \cap W = \{0\}$ then U + W = V. C dim $U + W = \{0\}$ then U + W = V. $W + W = X + Y + X \in U, Y \in V$.
 - C. dim U + dim $W \ge \dim(U + W)$.
 - D. The dimension of U + W is unrelated to dim U and dim W.

$$\begin{aligned} & \text{dim}\,\mathcal{U} + \text{dim}\,\mathcal{W} = \text{dim}\,\mathcal{U}\mathcal{W} + \text{dim}\,\mathcal{U}\mathcal{M}.\\ & \text{select } \alpha \text{ basis } \alpha = \left\{v_1 \cdots v_k\right\} \quad \text{of } \mathcal{U}\mathcal{M}.\\ & \text{expand } \alpha \text{ to basis } \text{of } \mathcal{U} \quad \left\{v_1 \cdots v_k \cdot \mathcal{U}_1 \cdots \mathcal{U}_m\right\} = \beta\\ & V \quad \left\{v_1 \cdots v_k \cdot \mathcal{W}_1 \cdots \mathcal{W}_n\right\} = \gamma\\ & \text{dim}\,\mathcal{U} = k + m. \quad \text{dim}\,\,\mathcal{V} = k + m.\\ & \text{BUX} = \left\{v_1 \cdots v_k \cdot \mathcal{U}_1 \cdots \mathcal{U}_m, \,\,\mathcal{W}_1 \cdots \mathcal{W}_n\right\}. \quad \left\{\begin{array}{c} \text{spans } \mathcal{U} + \mathcal{U}\\ \text{is linearly indep.} \end{array}\right.\end{aligned}$$

(e) (1 point) Which of the following definitions, makes $T: \mathbb{R}_2[x] \longrightarrow \mathbb{R}^2$ into a surjective linear map?

A.
$$T(p) = \begin{pmatrix} 0 \\ p(1) \end{pmatrix}$$
$$T(p_{1}+p_{2}) = \begin{pmatrix} 0 \\ p(1) \end{pmatrix}$$
$$P(1) \begin{pmatrix} p_{1} \\ p_{1} \end{pmatrix} + \begin{pmatrix} 0 \\ p_{1} \end{pmatrix} +$$

Midterm 1

- 2. Give (simple) examples of all of the following situations.
 - (a) (2 points) Two subspaces U, V of $Mat_{2\times 2}(\mathbb{R})$ such that $U+V = Mat_{2\times 2}(\mathbb{R})$ but $Mat_{2\times 2}(\mathbb{R}) \neq U \oplus V$.

$$\begin{aligned} & \mathcal{L} = \left\{ \begin{pmatrix} a & b \\ c & o \end{pmatrix} \right\} | a, b, c \in \mathbb{R}^{2} \\ & V = \left\{ \begin{pmatrix} a & o \\ b & c \end{pmatrix} \right\} | a, b, c \in \mathbb{R}^{2} \\ & \mathcal{L} \end{aligned}$$

(b) (2 points) A basis for each of your subspaces U and V above.

$$u: \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

$$v: \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

(c) (1 point) A basis for $Mat_{2\times 2}(\mathbb{R})$ that does not contain either of the bases from the previous part.

$$B = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

Midterm 1

1.

- 3. Consider the following maps. Prove or disprove that they are linear and if linear, find the dimension of the kernel (nullspace).
 - (a) (1 point) $T: \mathbb{R}^2 \to \mathbb{R}$ given by $T(a,b) \in a^2 b^2$. $T(a,b) = a^2 + b^2$. $T[(a_1 + a_2, b_1 + b_2)] = (a_1 + a_2)^2 + (b_1 + b_2)^2$. $T(a_1, b_1) + T(a_2, b_2) = a_1^2 + a_2^2 + b_1^2 + b_2^2$. $T[(a_1, b_1) + T(a_2, b_2)] = T(a_1 + b_1) + T(a_2, b_2)$ not closed under addition. Not linear. (b) (4 points) $R: Mat_{2\times 2}(\mathbb{C}) \to \mathbb{C}^2$ given by

$$R(M) = M \cdot \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$R(M_1 + M_2) = (M_1 + M_2) \cdot \begin{pmatrix} 2 \\ -1 \end{pmatrix} = M_1 \cdot \begin{pmatrix} 2 \\ -1 \end{pmatrix} + M_2 \begin{pmatrix} 2 \\ -1 \end{pmatrix} = R(M_1) + R(M_2)$$

$$R(M) = (\lambda M) \cdot \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \lambda \cdot M \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \lambda \cdot R(M)$$
Satisfy finearity.
$$I \times 2 = 2 \times (-2 \times 1)$$

$$L + M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad M \cdot \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2a + b \\ 2c - d \end{pmatrix} = 0.$$

$$2a = b \cdot 2C = d \cdot \qquad M = \begin{pmatrix} a & 2a \\ c & 2c \end{pmatrix} = Span \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix}$$

dim (ker R) = 2.

Midterm 1

4. (a) (2 points) Let V and W be vector spaces and let $T: V \longrightarrow W$ be a linear map. Prove that the kernel (nullspace), ker $T \subset V$ is a subspace. ker T= STIN=0 |VEV]. Since T is linear map, T(Vi+V) = T(Vi) + T(V), if T(Vi), T(V) + ker(T), T(Vi+V) + ker(T) EW! not V. VAER, T(AV) = ATW of TWEEKET(T), ATW EKer(T) x 2010 element: & VEKErT, BWEKErT, W+V=0+V=V. thus ker(T) contains the zero element and is closed under Dby dog of lin map, T(Ur)=Ow OVEN(T) SFX. YENT TURY) = TOX+TIY)= autor= au (b) (3 points) Suppose W_1 and W_2 are two subspaces of a vector space V such that $V = W_1 \oplus W_2$. If B_1 and B_2 are bases of W_1 and W_2 respectively, show that $B_1 \cup B_2$ is a basis for V. $V = W_1 \oplus W_2 = \left\{ \begin{array}{c} W_1 + W_2 = V \\ W_1 \wedge W_2 = \left\{ 0 \right\} \end{array} \right\}$ Let B = {x1 - ... xn} B2 = {y1 - ... ym}. $\forall V \in W_1$. $V = \lambda_1 X_1 + \dots + \lambda_n X_n$. VWEW2, W= Muy + -...+ Mneym. VPEV, p= V+W, VEW, . WEW2. P= Ai Ki + ··· + An Xn + lui y, +··· um ym. - spanning. since win we = {0}. Bin Bo = {0}. Biu Be = {X_1...Xn, yi....Ym}. no repetitive elements. Let XIX, +-+ XnXn+Muy,+...+ Mmym=0. if {x1.... Xn. y1.... ym } are not linearly independent, pick Q= X, X, -1 -- + AnXn + M, Y, + -- + Mm Ym. since { y ... ym} are linearly independent , { x ... x n } are linearly independent, Xixi+ -- + In Xn = - (Miyi+ -- + Mm ym) LHS EW, RHSEWS. > LHSEW2 & RHSEW,. WINW2= {0}, => RHS = LHS = 0. => $\lambda_1 = --= \lambda_n = 0, \ \mu_1 = --= \mu_n = 0$ =>{X, --- Xn, y, --- ymy are linearly motopondent. => it is a basis '