
LING185A, Take-home final exam

Due date: Wed. 3/21/2018, 5:00pm

Instructions

Download Exam Stub.hs from the website, and rename it to Exam.hs. You will need to write code in this
file. You should also download ExamProbCFG.hs and ExamProbFSA.hs and save them in the same directory,
but you should not modify these two files.

This exam has three sections:

� For Sections 1 and 2 you will write some code in Exam.hs. You will need to submit this file online.

� For Section 3 you will answer some written (non-code) questions. You will need to submit a hard copy
of your answers to these question in person, to the front desk of the Linguistics Department main office
(Campbell Hall 3125) during business hours.

You are allowed to consult your notes from lectures, your answers to the course assignments, and anything
posted on the course CCLE site. You may also consult any additional sources which have been explicitly
mentioned in any of these materials (this includes the Manning & Schütze and Jurafsky & Martin textbooks
mentioned in the syllabus), but this should not really be necessary and you should think carefully about
whether you are wasting time by looking further afield like this.

You must not receive any assistance on this exam from anyone except the instructor or TA, and you must
not provide any such assistance to anyone else.

1 Generic grammar computations (9 points)

1.1 Preview

Think back to the first time we wrote a function for calculating backward probabilities from a PFSA — in
the straightforward recursive manner, without storing intermediate values in a table to be re-used. It looked
something like this:

backward :: ProbFSA -> [String] -> State -> Double

backward g output st =

case output of

[] -> endProb g st

(w:ws) -> sum [trProb g st next * emProb g (st,next) w * backward g ws next | next <- allStates g]

And we’ve seen that in order to compute the probability of the most likely single analysis of a word-sequence
starting from a given state, also known as a Viterbi probability — rather than the total probability of all
such analyses, which is what we call a backward probability — we can just replace the sum in this code with
maximum.

That should give you the idea of factoring out the common parts that are shared by the calculation of
backward probabilities and the calculation of Viterbi probabilities, and writing a generic function which can
take either sum or maximum as an argument. Such a function would look like this:
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generic :: ([Double] -> Double) -> ProbFSA -> [String] -> State -> Double

generic f g output st =

case output of

[] -> endProb g st

(w:ws) -> f [trProb g st next * emProb g (st,next) w * generic f g ws next | next <- allStates g]

Then we could use this to write nice short definitions of functions to calculate backward and Viterbi proba-
bilities:

backward :: ProbFSA -> [String] -> State -> Double

backward g output st = generic sum g output st

viterbi :: ProbFSA -> [String] -> State -> Double

viterbi g output st = generic maximum g output st

That’s a nice start, and gives you the gist of what we’re going to be doing below — but it turns out we can do
way better! You’ll discover that we can write something which is roughly like the generic function above,
but which factors out an even more abstract pattern which underlies not only the calculation of backward
and Viterbi probabilities, but all sorts of other (P)FSA-based computations as well.

And essentially the same thing will happen with CFGs: you can probably imagine a genericCFG function to
which we would pass either sum to calculate inside probabilities or maximum to calculate Viterbi probabilities,
but we’ll go further than that, too.

1.2 Computing values other than probabilities

Suppose we had available the following functions, which are analogous to the trProb, emProb and endProb

functions we have seen for PFSAs, but which simply return a boolean indicating whether a particular “event”
(a transition, an emission, or the event of ending at a particular state) is possible rather than returning a
probability. In other words, these functions let us effectively work with a non-probabilistic FSA.

trOK :: ProbFSA -> State -> State -> Bool

emOK :: ProbFSA -> (State,State) -> String -> Bool

endOK :: ProbFSA -> State -> Bool

Using these we could write a function to compute whether it’s possible, given a particular state to start
from, to reach an end state by emitting a particular given sequence of symbols. (This is the function
recognizeBackward from Assignment #4.)

recognize :: ProbFSA -> [String] -> State -> Bool

recognize g output st =

case output of

[] -> endOK g st

(w:ws) -> elem True [trOK g st next && emOK g (st,next) w && recognize g ws next | next <- allStates g]

Take a moment to make sure that you understand how this works. But then, notice that the general shape
of it looks awfully familiar. This, as you may have guessed, is not a coincidence!

Before going further let me introduce a few new predefined Haskell functions:

� The function and :: [Bool] -> Bool computes the conjunction of a list of booleans. In other words,
and is to && as sum is to +.

� The function or :: [Bool] -> Bool computes the disjunction of a list of booleans. In other words,
or is to || as sum is to +.

� The function product :: [Double] -> Double computes the product of a list of numbers. In other
words, product is to * as sum is to +.

Then one way to clearly see the similarities between recognition and the calculation of backward probabilities
is to rewrite recognize and backward like this:

recognize :: ProbFSA -> [String] -> State -> Bool

recognize g output st =
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case output of

[] -> endOK g st

(w:ws) -> or [and [trOK g st next, emOK g (st,next) w, recognize g ws next] | next <- allStates g]

backward :: ProbFSA -> [String] -> State -> Double

backward g output st =

case output of

[] -> endProb g st

(w:ws) -> sum [product [trProb g st next, emProb g (st,next) w, backward g ws next] | next <- allStates g]

There are five points of variation here. For each of these two functions, there is:

� Some way to get, from a grammar, a value associated with the event of ending on a particular state.
This is endOK for recognize, and endProb for backward.

� Some way to get, from a grammar, a value associated with the transition from one state to another.
This is trOK for recognize, and trProb for backward.

� Some way to get, from a grammar, a value associated with the emission of a particular symbol on the
transition between two particular states. This is emOK for recognize, and emProb for backward.

� Some way to combine a list of values that represent a collection of events, to produce a value associated
with all of those events occurring. This is and for recognize, and product for backward.

� Some way to combine a list of values that represent a collection of events, to produce a value associated
with any one of those events occurring. This is or for recognize, and sum for backward.

The type BundleForFSA represents bundles of five functions that do these five things, parametrized by the
type of values we want to work with:

type BundleForFSA a = ( ProbFSA -> State -> a, -- ending values

ProbFSA -> State -> State -> a, -- transition values

ProbFSA -> (State,State) -> String -> a, -- emission values

[a] -> a, -- combine such that all happen

[a] -> a -- combine such that one happens

)

Such a bundle can be used by a nice generic function as follows:

genericFSA :: BundleForFSA a -> ProbFSA -> [String] -> State -> a

genericFSA b g output st =

let (endVal, trVal, emVal, allOf, oneOf) = b in

case output of

[] -> endVal g st

(w:ws) -> oneOf [allOf [trVal g st next, emVal g (st,next) w, genericFSA b g ws next] | next <- allStates g]

Your task will be to define the appropriate bundles that will allow this sort of generic function to be used
to do all sorts of interesting computations.

1.3 Now let’s look at the code

Now have a look at Exam.hs. Look for the function called genericFSA. Although its implementation is
different, its type is the same as the type of the genericFSA function show above, and you can basically
assume that it is that same function. The difference is that the implementation of genericFSA in the file
stores the values it computes in a table so that they can be retrieved later rather than recomputed, like
we saw in Assignment #9, so it will still be reasonably fast for larger inputs. It does this in a modular,
streamlined way that hides the manipulation of the underlying table as much as possible, and also abstracts
completely over the result type a. You should not worry about the details of how it does this, but you should
be able to see (if you squint a bit and look past the use of tryRetrieveElse, pure and lift) the outlines
of the straightforward genericFSA function shown above.

Notice that there’s an analogous genericCFG function, and an associated type BundleForCFG. A BundleForCFG

has only four components: something to extract “ending values” (corresponding to rules like ‘D → the’),
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something to extract “transition values” (corresponding to rules like ‘VP → V NP’), and the same two
combining functions. And again, you should be able to see the outlines of the familiar pattern we’ve used
for calculating, for example, inside probabilities, in the implementation of genericCFG.

Immediately above the definitions of genericFSA and genericCFG, there’s a section of the file containing
definitions for the functions (such as tryRetrieveElse) that look after the way values are stored in a table
and retrieved in order to avoid recomputing them. You can safely ignore this section. Above that, you will
find a collection of import lines that import certain things from ExamProbFSA.hs and ExamProbCFG.hs.
Notice that (because some of the imports are qualified), in order to refer to the functions trProb, emProb,
endProb and allCats from ExamProbFSA.hs you need to put FSA. in front of their names; and similarly for
the functions trProb, endProb and allStates from ExamProbCFG.hs.

Now look at the part down below the definitions of genericFSA and genericCFG. Find the definition of
backwardBundleFSA. This specifies the five choices that are relevant for the calculation of backward proba-
bilities, mentioned above. So we can calculate backward probabilities like this:

*Exam> genericFSA backwardBundleFSA pfsa3 ["a","d"] 10

0.20500000000000002

*Exam> genericFSA backwardBundleFSA pfsa3 ["d","e","a","d"] 20

4.100000000000001e-2

*Exam> genericFSA backwardBundleFSA pfsa3 ["d","e","a","d"] 30

9.225000000000001e-2

*Exam> genericFSA backwardBundleFSA pfsa1 ["damaged","stuff"] 3

2.4e-2

*Exam> genericFSA backwardBundleFSA pfsa1 ["damaged","stuff"] 4

1.68e-2

*Exam> genericFSA backwardBundleFSA pfsa1 ["damaged","stuff"] 5

0.0

Similarly, recognizeBundleFSA can be used to do the same work as the recognize function from above:

*Exam> genericFSA recognizeBundleFSA pfsa3 ["d","e","a","d"] 20

True

*Exam> genericFSA recognizeBundleFSA pfsa1 ["damaged","stuff"] 4

True

*Exam> genericFSA recognizeBundleFSA pfsa1 ["damaged","stuff"] 5

False

Finally, I’ve also defined insideBundleCFG for you, which can be used with genericCFG to calculate inside
probabilities:

*Exam> genericCFG insideBundleCFG pcfg1 ["saw","cats","with","telescopes"] VP

1.5875999999999998e-2

*Exam> genericCFG insideBundleCFG pcfg1 ["dogs","saw","cats","with","telescopes"] VP

0.0

*Exam> genericCFG insideBundleCFG pcfg1 ["dogs","saw","cats","with","telescopes"] S

1.5875999999999998e-3

*Exam> genericCFG insideBundleCFG pcfg1 ["dogs","saw","cats","with","telescopes","with","telescopes"] S

2.6535599999999996e-4

*Exam> genericCFG insideBundleCFG pcfg2 ["dogs","saw","cats","with","telescopes"] S

1.0692e-3

*Exam> genericCFG insideBundleCFG pcfg2 ["dogs","saw","cats","with","telescopes","with","telescopes"] S

2.3969520000000002e-4

Your task here is to define various other bundles like these three, as described below in section 1.4.

Some general notes/hints:
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� It’s fine for the two [a] -> a functions that appear in all of these bundles to be undefined for the
empty list.

� The two [a] -> a functions will never need to be sensitive to the order amongst the elements of the
input list. (So for example, nothing will depend on your realizing that the result from trVal is the
first of the three elements in the list that is passed to allOf in genericCFG; it’s safe to pretend that
you “don’t know” these internal details about how genericCFG is written.)

� The file contains a definition of the type EventFromCFG; you may find it useful to define a bundle of
type BundleForCFG EventFromCFG, for debugging purposes. But I’ll leave you to work out exactly
how.

� You can, of course, define the functions that you want to put into these bundles in the usual standalone
way and then write the name of that function in the tuple. In recognizeBundleFSA the functions that
needed to be defined just happened to be simple enough that writing a lambda term was convenient.
(But if one of the functions we had to write there was recursive, for example, . . . )

� You may find the predefined Haskell function foldr1 useful. Its definition looks like this:

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 f [] = undefined

foldr1 f (x:[]) = x

foldr1 f (x:xs) = f x (foldr1 f xs)

So you can think of this as something that transforms a function that combines exactly two things
(type a -> a -> a) into a function that combines a list of things (type [a] -> a). For example,
product is just

foldr1 (\x -> \y -> x * y)

so it may be convenient sometimes to define a “two at a time” function that combines things in the
way that you want, and then use foldr1 to convert that into a list-based function of the kind that
needs to go into a bundle.

So the upshot of these last two points is that, for example, insideBundleCFG could be defined as follows,
which is entirely equivalent to what’s in the file:

insideBundleCFG :: BundleForCFG Double

insideBundleCFG = (CFG.endProb, CFG.trProb, foldr1 multiply, sum)

multiply :: Double -> Double -> Double

multiply x y = x * y

1.4 Over to you . . .

These first few should be relatively easy warm-ups to ease you into things.

A. Define recognizeBundleCFG :: BundleForCFG Bool so that it can be used to perform recognition
with CFGs, i.e. decide whether there’s a structural description for the given word-sequence which has
the given category at its root.1

*Exam> genericCFG recognizeBundleCFG pcfg1 ["saw","cats","with","telescopes"] VP

True

*Exam> genericCFG recognizeBundleCFG pcfg1 ["saw","cats","with","telescopes"] S

False

*Exam> genericCFG recognizeBundleCFG pcfg1 ["dogs","saw","cats","with","telescopes"] S

True

*Exam> genericCFG recognizeBundleCFG pcfg1 ["dogs","saw","cats"] S

True
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B. Define viterbiBundleFSA :: BundleForFSA Double so that it can be used to compute Viterbi prob-
abilities in an FSA.2

*Exam> genericFSA viterbiBundleFSA pfsa3 ["a","d"] 10

0.189

*Exam> genericFSA viterbiBundleFSA pfsa3 ["a","d","e","a","d"] 10

3.5720999999999996e-2

*Exam> genericFSA viterbiBundleFSA pfsa3 ["a","d","e","a","d"] 30

0.0

*Exam> genericFSA viterbiBundleFSA pfsa3 ["d","e","a","d"] 30

8.505e-2

*Exam> genericFSA viterbiBundleFSA pfsa3 ["d","e","a","d"] 20

3.78e-2

C. Define viterbiBundleCFG :: BundleForCFG Double so that it can be used to compute Viterbi prob-
abilities in a CFG.

*Exam> genericCFG viterbiBundleCFG pcfg1 ["saw","cats","with","telescopes"] VP

9.071999999999998e-3

*Exam> genericCFG viterbiBundleCFG pcfg1 ["dogs","saw","cats","with","telescopes"] S

9.071999999999999e-4

*Exam> genericCFG viterbiBundleCFG pcfg2 ["dogs","saw","cats","with","telescopes"] S

6.804000000000001e-4

Now some more interesting ones . . .

D. Define countBundleFSA :: BundleForFSA Int and countBundleCFG :: BundleForCFG Int so that
they can be used to compute the number of possible analyses of the given word-sequence that are
consistent with the given category/state.

*Exam> genericFSA countBundleFSA pfsa3 ["a","d","e","a","d"] 10

4

*Exam> genericFSA countBundleFSA pfsa3 ["d","e","a","d"] 20

2

*Exam> genericFSA countBundleFSA pfsa3 ["d","e","a","d"] 30

2

*Exam> genericFSA countBundleFSA pfsa3 ["e","a","d"] 30

0

*Exam> genericFSA countBundleFSA pfsa3 ["e","a","d"] 40

2

*Exam> genericFSA countBundleFSA pfsa3 ["e","a","c"] 40

1

*Exam> genericCFG countBundleCFG pcfg1 ["dogs","saw","cats"] S

1

*Exam> genericCFG countBundleCFG pcfg1 ["dogs","saw","cats","with","telescopes"] S

2

*Exam> genericCFG countBundleCFG pcfg1 ["saw","cats","with","telescopes"] S

0

*Exam> genericCFG countBundleCFG pcfg1 ["saw","cats","with","telescopes"] VP

2

*Exam> genericCFG countBundleCFG pcfg1 ["cats","with","telescopes"] NP

1

*Exam> genericCFG countBundleCFG pcfg1 ["saw","cats","with","telescopes","with","telescopes"] VP

5

E. Define probsBundleFSA :: BundleForFSA [Double] and probsBundleCFG :: BundleForCFG [Double]

so that they can be used to compute the list of the probabilities of the possible analyses of the given

1Doing this should clarify the sense in which (i) the relationship between what we call backward probabilities in an FSA
and what we call inside probabilities in a CFG, is the same as (ii) the relationship between what we call recognition in an FSA
and what we call — umm, recognition in a CFG.

2To be clear, these are what were called backward Viterbi probabilities in Assignment #8.
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word-sequence that are consistent with the given category/state. The order of the elements in the
result list does not matter.

*Exam> genericFSA probsBundleFSA pfsa3 ["a","d","e","a","d"] 10

[2.560000000000001e-4,3.0240000000000006e-3,3.0240000000000006e-3,3.5720999999999996e-2]

*Exam> genericFSA probsBundleFSA pfsa3 ["e","a","c"] 40

[1.2e-2]

*Exam> genericFSA probsBundleFSA pfsa3 ["e","a","d"] 40

[8.000000000000002e-3,9.45e-2]

*Exam> genericFSA probsBundleFSA pfsa3 ["a","d"] 10

[1.6000000000000004e-2,0.189]

*Exam> genericCFG probsBundleCFG pcfg1 ["saw","cats","with","telescopes"] VP

[6.803999999999999e-3,9.071999999999998e-3]

*Exam> genericCFG probsBundleCFG pcfg2 ["saw","cats","with","telescopes"] VP

[6.803999999999999e-3,3.8879999999999995e-3]

*Exam> genericCFG probsBundleCFG pcfg1 ["cats","with","telescopes"] NP

[1.296e-2]

*Exam> genericCFG probsBundleCFG pcfg2 ["cats","with","telescopes"] NP

[1.296e-2]

F. Define derivationBundleCFG :: BundleForCFG [[GrammarRule]] so that it can be used to compute
the list of leftmost derivations that derive the given word-sequence from the given category. The
leftmost derivation corresponding to a particular tree structure is the sequence of rules that can be
used to construct that tree structure in such a way that each step rewrites the leftmost remaining
nonterminal; for a more detailed explanation and examples of this, see section 2 below. The order in
which the derivations appear in the result list does not matter (but the order in which the rules appear
in each derivation does matter, of course).

*Exam> genericCFG derivationBundleCFG pcfg1 ["cats","with","telescopes"] NP

[[Step NP (NP,PP),End NP "cats",Step PP (P,NP),End P "with",End NP "telescopes"]]

*Exam> genericCFG derivationBundleCFG pcfg1 ["saw","cats","with","telescopes"] VP

[[Step VP (VP,PP),Step VP (V,NP),End V "saw",End NP "cats",

Step PP (P,NP),End P "with",End NP "telescopes"],

[Step VP (V,NP),End V "saw",Step NP (NP,PP),End NP "cats",

Step PP (P,NP),End P "with",End NP "telescopes"]]

G. Define probDerivBundleCFG :: BundleForCFG [(Double,[GrammarRule])] so that it can be used
to compute the list of leftmost derivations from the previous question, but with each one paired up
with its probability. The order in which these pairs appear in the result list does not matter.

*Exam> genericCFG probDerivBundleCFG pcfg1 ["saw","cats"] VP

[(0.126,[Step VP (V,NP),End V "saw",End NP "cats"])]

*Exam> genericCFG probDerivBundleCFG pcfg2 ["saw","cats"] VP

[(5.4e-2,[Step VP (V,NP),End V "saw",End NP "cats"])]

H. Define countVPsBundleCFG :: BundleForCFG [Int] so that it can be used to compute a list contain-
ing, for each derivation of the given word-sequence from the given category, the number of VP nodes
in the corresponding tree structure. The order in the result list does not matter.

*Exam> genericCFG countVPsBundleCFG pcfg1 ["saw","cats","with","telescopes"] VP

[2,1]

*Exam> genericCFG countVPsBundleCFG pcfg1 ["dogs","saw","cats","with","telescopes"] S

[2,1]

*Exam> genericCFG countVPsBundleCFG pcfg1 ["saw","cats","with","telescopes"] VP

[2,1]

*Exam> genericCFG countVPsBundleCFG pcfg1 ["saw","cats"] VP

[1]

*Exam> genericCFG countVPsBundleCFG pcfg1 ["with","telescopes"] PP

[0]

*Exam> genericCFG countVPsBundleCFG pcfg1 ["with","telescopes"] VP

[]
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2 Leftmost derivations (5 points)

In general, given a particular tree generated by a context-free grammar, there are a number of different
orders in which the rewriting steps might take place, all of which lead to the same tree. Consider, for
example, carrying out a sequence of top-down rewrite steps to produce the tree in (1). The first rule used
will necessarily be ‘VP → VP PP’, but the second rule might be either ‘VP → V NP’ or ‘PP → P NP’.

If we impose the constraint that at each point we rewrite the leftmost nonterminal symbol (or category),
however, then for each tree there is a unique order in which the rewriting steps must have occurred. If we
write down the rules that are used at each such step in an ordered list, we have what is known as a leftmost
derivation.

For example, the leftmost derivation for the tree in (1) is shown in (2).

(1) VP

PP

NP
telescopes

P
with

VP

NP
cats

V
saw

(2) [VP → VP PP, VP → V NP, V → saw, NP → cats, PP → P NP, P → with, NP → telescopes]

And the leftmost derivation for the tree in (3) is shown in (4).

(3) VP

NP

PP

NP
telescopes

P
with

NP
cats

V
saw

(4) [VP → V NP, V → saw, NP → NP PP, NP → cats, PP → P NP, P → with, NP → telescopes]

Notice that, although carrying out rewrite steps in the order of the list in (5) will also lead to the tree in (1),
it is not a leftmost derivation because it rewrites the PP before rewriting the lower VP. We can say that this
is still a derivation of (1), but it is not the leftmost derivation of (1); there is only one leftmost derivation
for any tree.3

(5) [VP → VP PP, PP → P NP, P → with, NP → telescopes, VP → V NP, V → saw, NP → cats]

And the list in (6), although it contains all the same rules, is not a derivation of (1), or of any other tree.

(6) [VP → VP PP, P → with, NP → telescopes, PP → P NP, VP → V NP, V → saw, NP → cats]

A. Write a function leftmostCheck :: [GrammarRule] -> Bool which returns True iff the given se-
quence of rules is a valid leftmost derivation (corresponding to any tree structure at all).

3Fun fact: The leftmost derivation also corresponds to the sequence of steps taken by a top-down parser.
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*Exam> leftmostCheck [Step NP (NP,PP),End NP "cats",Step PP (P,NP),End P "with",End NP "telescopes"]

True

*Exam> leftmostCheck [Step NP (NP,PP),End NP "cats",Step PP (P,NP),End NP "telescopes",End P "with"]

False

B. Have a look at the type Result; an element of this type is either No, or Yes x for some x of type
StrucDesc.4 Write a function leftmostToSD :: [GrammarRule] -> Result. If the given sequence
of rules is not a valid leftmost derivation then this function should return No, or if it is a valid leftmost
derivation than it should return a Yes result with the StrucDesc for the corresponding tree structure.

*Exam> leftmostToSD [Step NP (NP,PP),End NP "cats",Step PP (P,NP),End P "with",End NP "telescopes"]

Yes (Binary NP (Leaf NP "cats") (Binary PP (Leaf P "with") (Leaf NP "telescopes")))

*Exam> leftmostToSD [Step NP (NP,PP),End NP "cats",Step PP (P,NP),End NP "telescopes",End P "with"]

No

3 The big picture (6 points)

In this section, assume that we are working with grammars where the individual symbols (e.g. things emitted
on an arc, or things appearing at a leaf node, etc.) are the letters {a,b,c,. . . ,x,y,z}. So when I write ‘abc’,
for example, this is a “word-sequence” of length three, which would be represented as ["a","b","c"] in the
way we’ve been doing things in Haskell.

Although I’m using probabilities as a kind of launching-off point, the important ideas here really do not
relate to probabilities.

3.1 Bigram grammars

A. Suppose I have a particular probabilistic bigram grammar which assigns a probability of 0.24 to ‘abx-
pqxcd’, and assigns a probability of 0.144 to ‘abxpqxpqxcd’. What probability does this grammar
assign to ‘abxpqxpqxpqxcd’? What probability does this grammar assign to ‘abxcd’?

3.2 FSAs and CFGs

Reminders:

probForward ws st = Pr(W1 . . .Wi−1 = ws, Si = st)

probBackward ws st = Pr(Wi . . .Wi+n−1 = ws, end at Si+n | Si = st)

probInside ws cat = Pr(Wα̂ = ws | Cα = cat)

probOutside (ws, xs) cat = Pr(W←−α = ws,W−→α = xs,Cα = cat)

B. Suppose I have a particular probabilistic FSA (which has 10 and 20 as two of its states), such that:

probForward ‘abc’ 10 = 0.2

probForward ‘abc’ 20 = 0.2

probForward ‘def’ 10 = 0.1

probBackward ‘def’ 10 = 0.3

probBackward ‘pqr’ 20 = 0.2

What strings can we conclude are assigned non-zero probabilities by this probabilistic FSA?

4This type Result relates to StrucDesc in the way that the type called Result from Week #1 related to the type Shape.
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C. Explain why we cannot reach conclusions about the exact probabilities of the strings you gave in your
answer to the previous question, whereas we could reach conclusions about exact probabilities in the
first question above on bigram grammars.

D. Suppose I have a particular probabilistic CFG (which has A and B as two of its categories), such that:

probOutside (‘abc’, ‘xyz’) A > 0

probOutside (‘tuv’, ‘pqr’) B > 0

probOutside (‘def’, ‘ijk’) A > 0

probInside ‘ghi’ A > 0

probInside ‘ijk’ B > 0

What strings can we conclude are assigned non-zero probabilities by this probabilistic CFG?

3.3 Linking probabilities

Let’s define a linking probability for FSAs as follows:

probLinkingFSA ws st1 st2 = Pr(Wi . . .Wi+n−1 = ws, Si+n = st2 | Si = st1)

A linking probability says something about the relationship between some word-sequence, ws, and two states,
st1 and st2. It is conditioned upon, or “starts from”, an assumption that a certain state (st1) appears at a
certain position (position i) in the state-sequence, like a backward probability. But it is also the probability
that (among other things) a certain state (st2) ends up appearing at a certain position (position i + n) in
the state-sequence, like a forward probability.

Similarly, let’s define a linking probability for CFGs as follows:

probLinkingCFG (ws, xs) cat1 cat2 = Pr(W←−
βα

= ws,W−→
βα

= xs,Cβα = cat2 | Cβ = cat1)

This says something about the relationship between a pair of word-sequences, (ws, xs), and two categories
cat1 and cat2. It is conditioned upon, or “starts from”, an assumption that a certain category (cat1) appears
at a certain address (address β) in the tree, like an inside probability. But it is also the probability that
(among other things) a certain category (cat2) ends up appearing at a certain address (address βα, i.e. β
concatenated with α) in the tree, like an outside probability.

E. Suppose I have a particular probabilistic FSA (which has 10 and 20 as two of its states), such that:

probForward ‘abc’ 10 > 0

probForward ‘ghi’ 10 > 0

probForward ‘abc’ 20 > 0

probBackward ‘def’ 20 > 0

probLinkingFSA ‘pqr’ 10 20 > 0

What strings can we conclude are assigned non-zero probabilities by this probabilistic FSA?

F. Suppose I have a particular probabilistic CFG (which has A and B as two of its categories), such that:

probOutside (‘abc’, ‘xyz’) A > 0

probInside ‘ghi’ A > 0

probInside ‘ijk’ B > 0

probLinkingCFG (‘xyz’, ‘tuv’) A B > 0

probLinkingCFG (‘def’, ‘pqr’) A A > 0

What are six strings that we can conclude are assigned non-zero probabilities by this probabilistic
CFG?
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