Midterm exam

Ethan Poole
LING 120C: Semantics I

Note: You may use the textbook (Heim & Kratzer 1998) and your class notes on this midterm exam.

			1 4 points -Z
Plea	se complete the following:	truth roly expression for to	2 Cen \$ 150 4
(a)	The intension of a sentence is.	the thing the expression it is to at a given world at time	-·
(b)	The extension of a sentence is	the general concept behind the expression that detents what the expression is extension is	Donald Time
		at a given would a time	

Please briefly describe how our semantic system based on truth values is able to derive truth conditions.

To know the meaning of a sentence is to know its truth conditions.

And, as sentences are composed of discrete parts—

each of which denote truth values, the conditions of the sentence as a whole depends on the functional application of the individual truth values saturating one another in the sentence. to compose its meanings

assume [S] = T and work backwards

5 points

10 points

Please answer the following comprehension questions about functions.

What is the domain and the range of the following function? What is f(LA)?

 $g = \{(1,1), (2,4), (3,9), (4,16), (5,25)\}$ $[\lambda x \in N . x^2]$

Please use λ -conversion to calculate the value of the following expression (show each step):

$$[\lambda x : x \in \mathbb{N} . [\lambda z : z \in \mathbb{N} . x + z]](4)(5)$$

(remember that N is the set of natural numbers)

$$fa = [\lambda z: z \in \mathbb{N}. 4 + z](5)$$

= $4 + 5 = 9$

(d) What is the semantic type of the following function?

 $\lambda x:x\in \mathbb{D}_e$. $\lambda y:y\in \mathbb{D}_e$. $\lambda z:z\in \mathbb{D}_e$. z introduces x to yLe, (e, (e,+>))

Please define the following function using λ-notation:

4 30 points

On the next sheet, please use our semantic-composition rules (listed on the last page) to compute the truth conditions of the following sentence:

Be sure to show each step of the derivation and to indicate the semantic-composition rule or other deduction (e.g. λ -conversion or a subproof) used at each step.

```
SUBPRIOF 1
                                                                                                             SUPPROUF 2
                                                                                                                                                                                                                           SUBPROUF 4
                                                                                                                                                                      subprouf 3
                                                           IDPIJ = NN
                                                                                                           [AP] = NN
                                                                                                                                                                                                                          [NP. 1] = PM
                                                                                                                                                                [NP2] = NN
                                                                                                                                                                                                                      [xxe. [AP](x)=T and [NP2](x)=T]
                                                                                                         BA7=TN
                                                           [P] = TN
                                                                                                                                                               [Ne] = TN
                                                                                              1/2 xe. x is a ange?
                                                  A Megan
                                                                                                                                                    A[ [ ] Xe. x is a (at]
                                                                                                                                                                                                               [ \lambda xe. [ \lambda xc. x Is corge ](x)=T and [ Are. x is not](x)=T
                                         SUBPROOF 5
                                [D2]= TN
                                                                                                                                                                                                   Sk[ ] Xe. x is range and x is a cat]
                      A[ \ten: ]! x[f(x)=T]. W[f(y)=T]]
                           SUBPROUF 6
                   JOR 1 = FA
                [P2]([NP,]) = 5,4
   [\first \fix[f(x)=T]. LY[f(y)=T]](\lambda \text{Xe. x is oange & x 1s a cat) = \lambda conven
              Ly [[\(\lambda\text{x}\) = \(\lambda\) = \(\lambda\) = \(\lambda\) where \(\lambda\)! \(\lambda\) = \(\lambda\) cond = \(\lambda\) = \(\lambda
   & LY[ y is orange dy is a cat] , where 3! y (fl)=T]
          SUBPROUF 7
                                                                             SUBPROF 8
     [V] = TN
                                                                         [LVP]] = FA
                                                                     [v]((DP,1) = 7,6
=[ \lambda xe. (\lambda ye. y rets x]]
                                                                   [ \large (\large \gamma gets x)] (LF [z is a enge & z is a cet), whice f!z[z is a enge & zis ut])
                                                          *[ ] rets [LZ[zis orange & zis 2 (a+], whe ]! z[zis orange & zis (a+]]]
[ lye. y pels [lz[zisonuje & z is cet], who 31.7 [zusage czusus]] (Megan) = Tiff by 2-convu
           [S] = TIFF by FA
A Megan pets 12[zisonge & ziscat], whice ]! z[zisonige & ziscat]
```

The English cleft construction is exemplified by sentences like those below:

- It is Lisa who Jane loves. (1)
 - It is Lisa who loves Jane.
 - It is Ellen who Jane loves.
 - It is Ellen who loves Jane.

We will assume that this construction has the following, oversimplified syntax:

In this exercise, you will be working out a compositional semantics for the English cleft construction. To begin with, let us assume the lexical entries below:

- (3) a. [Lisa] = Lisab. [Ellen] = Ellen
 - [who Jane loves] = λx_e . Jane loves x
 - [who loves Jane] = λx_e . x loves Jane

<e, +>

(e, + >

Question 1:

[5 points]

Assuming the syntax in (2) and the lexical entries in (3), what could the semantic type of the Cleft-Marker it is be? [Note: There are two possibilities.]

Linguists have long observed that the English cleft carries a particular presupposition. As indicated below, a cleft of the form It is DP Relative-Clause presupposes that there is exactly one thing that the relative clause is true of. For example:

- It is Lisa who Jane loves presupposes there is exactly one x such that 3! x [Jane Ines x] Jane loves x.
 - It is Ellen who loves Jane presupposes there is exactly one x such that] X [X lives Jane] x loves Jane.

Question 2:

[5 points]

H's not

the case that

At I LISE who

Jane Ims

[178 LISA

mad Jam

= TIPP Jame lons

senteng

Jen X

Use a diagnostic to show that the presuppositions in (4) are indeed correct. one way to prove a presupposition's concetness is to check regating the original sentence mener two F under the presuppositus. It is DP del-clue I can only take as argument Thus, one example of see an input that would give an undefined extension is cats. presupposes: thuc is exactly me x such that Jane loves X It is alt that Jame loves

It is not the case that it is cate that Jane loves. prospeses: there is exactly one x such that dewe loves x.

Linguists have also long observed that, aside from its presupposition, the English cleft construction does not seem to differ much in meaning from the 'non-clefted'

counterpart. That is, the following truth-conditional statements seem accurate:

It is Lisa who Jane loves is T iff Lisa is the unique y such that Jane loves 4.

It is Ellen who loves Jane is T iff Ellen is the unique y such that y loves Jane.

Page 6 of 7

Question 3:

[10 points]

Provide a lexical entry for the Cleft-Marker it is that predicts the truth-conditional statements in (5) and the presuppositions in (4). (You only need to give the lexical entry. You do not have to provide a truth-conditional derivation.)

Afects: 31x[f(x)x].

Axe: 31x[Afects. f(x) = I]. Agects. Lagrence with formulation of doesn't get.

[\lambda xe: there is exactly one x such that [\lambda fects. f(x) = Total (\lambda get) = get by the pand by the

Divif(W=17) faj=7

not type (e,((e,+),+))

[the] = > f < > : 3!x [f(x)-T]
. by [fly)=T]

Big Hint: Consider the way that our lexical entry for the captures the presupposition with which it is associated.

Bigger Hint: Your answer should analyze CleftP (i.e. It is Lisa) as being of semantic type $(\langle e, t \rangle, t)$.

Semantic-composition rules

"It is Lisa who Jan low" = Tiff

Jam loves

Nonbranching Nodes (NN) If α is a nonbranching node, and β is its daughter node, then $[\alpha] = [\beta]$.

= DP 13 + In unique x such that Jane 1

b. Functional Application (FA)

If α is a branching node, $\{\beta, \gamma\}$ is the set of α 's daughters, and $[\beta]$ is a function whose domain contains $[\gamma]$, then $[\alpha] = [\beta]([\gamma])$.

Terminal Nodes (TN)

If α is a terminal node, $[\![\alpha]\!]$ is specified in the lexicon.

Predicate Modification (PM)

If α is a branching node, $\{\beta, \gamma\}$ is the set of α 's daughters, and $[\beta]$ and $[\![\gamma]\!]$ are both in $D_{(e,t)}$, then $[\![\alpha]\!] = \lambda x \in D_e$. $[\![\beta]\!](x) = T$ and $[\![\gamma]\!](x) = T$.