EEM16 Midterm

MELODY SZE WEI CHEN

TOTAL POINTS

64/80

QUESTION 1

Problem 120 pts

1.1 (a-c) 9 / 12

√ - 1 pts Question1 (a): 4 pts. Missing, or having 1
extra prime implicants

√ - 2 pts Question1 (c): 4 pts. Missing or having extra terms

1 This "1X" is also a prime implicant, since it is also the largest circle can be drawn to cover this 1.

1.2 (d-f) 4 / 8

√ - 2 pts Question1 (e): 2 pts.

√ - 1 pts Question1 (f): 3 pts. Incorrect hazard condition

√ - 1 pts Question1 (f): 3 pts. Incorrect term to remove the risk.

QUESTION 2

2 Problem 2 17 / 20

√ - 3 pts (c) not using the fewest NOR (7 gates)

QUESTION 3

3 Problem 3 20 / 20

√ - 0 pts Correct

QUESTION 4

Problem 4 20 pts

4.1 (a) 8 / 8

√ - 0 pts Correct

4.2 (b) 3/5

√ - 5 pts incorrect

+ 3 Point adjustment

P

partial... shouldn't split into 2 groups of 8.

4.3 (C) 3 / 7

√ - 4 pts incorrect separation into 2 one-hot

Midterm Exam

Name (Last, First): Mulody Chen
Student Id #: 2.612 323

Student Id #: 705120 273

Do not start working until instructed to do so.

- 1. You must answer in the <u>space provided</u> for answers after every question. We will ignore answers written anywhere else in the booklet. <u>All pages in this booklet must be accounted</u> for otherwise it will not be graded.
- 2. You are permitted 1 page of notes 8.5x11 (front and back).
- 3. You may not use any electronic device.

Following table to be filled by course staff only

	Maximum Score	Your Score
Question 1		1.0
Question 2		
Question 3		10
Question 4		
TOTAL	100	

Question #1

Consider the following Kamaugh Map for the Boolean function, Y. A blank truth table is provided for your convenience.

				A	В		
		"0	0"	"01"	"11"	"10"	OXIX
	"00"	" (0	0	1	1	
	"01		1	1)	X	X	OIXX
CD	"11	"		0	1	1 -	
	"10	·- (1	1	X	0	/ X11X.
100X	А	В	С	D	Y		
Ì	0	0	0	0	0	0,2345678901	
	0	0	0	1	10 302	'	
	0	0	1	0	W RE	_ 2	
	0	0	1	1	0	3	
	0	1	0	0	0	u	
Į	0	1	0	1			
	0	1	1	0		6	
	0	1	1	1	0	17	
	1	0	0	0		8	
	1	0	0	1		9	,
	1	0	1	0	0	10	
	_ 1	0	1	1		11	
	1	1	0	0		15	
	1	1	0	1		(3)	
	1	1	1	0		14	
	1	1	1	11] (5	
molicants o	n the	man	-				

(a) Circle the prime implicants on the map.
How many prime implicants are there?
(b) Write the Boolean (sum-of-product) expression of the essential prime implicants of (b) (if Essential Prime Implicants = $(C \wedge \overline{D} \wedge \overline{A}) \vee (\overline{C} \wedge \overline{D}) \vee (\overline{C} \wedge \overline{A}) \vee (\overline{D} \wedge \overline{A})$.

Lete the following statement any).

(c) Complete the following statement

(d)	f) Express as a minimal sum of product, ¬Y.	1701. C.N. rang
	The K man is provided for your services	
	July	
	AB	
	"00' "01" "11" "10	,
	"00" (0 0 1 1	7
	"01" 1 1 X X	110 X .
	CD "11" 0 0 1 1	- 110
		-
	"10" 1 X X	<u> </u>
	$\neg Y =$	
/- \) Is the dual of this function itself? Circle one: Justify your answer: VERNA V(CNDNA) V(CNDNA) V Start function for U V Start function function for U V Start function function for U V Start function funct	ialX.
(e)) is the dual of this function itself? Circle one: Yes	
	Justify your answer:	(ANA)
	U=((NDNA)V(CND)V (CNA)V	
		M(DVA)
	D(A) = (ADAB)V(CAD)V(CAU)	
	Justify your answer: Vetoms for function for your $y = ((NDNA)V(CND)V(CNA)V$ $D(y) = (CVDVA)N(CVD)N(CVA)$ Dualt y	
(f)	If the logic is implemented using its minimal sum-of-product expr static hazard?	ession, is there a risk of a
	Circle one: (Yes) No	
	Under what input conditions?	

What product term(s) would you add to remove the risk? The ON'S With don't caves

UCLA | ECEM16/CSM51A | Spring 2019

Question #2

(a) Rewrite the following Boolean equation as a sum-of-products or product-of-sum. Hint: apply DeMorgan's theorem.

Answer:
$$W = \neg (\neg (c \lor \neg (a \land \neg b)) \lor (d \land \neg e))$$

$$A \cap (c \lor \neg (a \land \neg b)) \lor (d \land \neg e)) \land (d \land e) = ((\lor (a \lor b)) \land (d \lor e) .$$

(b) Rewrite the following Boolean equation as a sum-of-products or product-of-sum.

Answer:
$$X = (c \lor (a \land b)) \lor (d \land e)$$

$$= ((\lor a) \lor (\lor b)) \lor (\lor d \land e)$$

$$= ((\lor a) \lor (\lor d \land e)) \land ((\lor b) \lor (\lor d \land e))$$

$$= ((\lor a \lor d) \land ((\lor a \lor e) \land ((\lor b \lor d) \land (\lor b \lor e))$$

$$x = ((\lor a \lor d) \land ((\lor a \lor e) \land ((\lor b \lor e) \land ((\lor b \lor e)))$$

(c) Implement the following function using NOR gates only and the fewest NOR gates possible. You may use true and complemented versions of the a-f inputs,

Tou may use true and complemented versions of the dry models $Y = (a \wedge b \wedge c \wedge d \wedge e) \vee (c \wedge d \wedge f)$ $Y = (a \wedge b \wedge c \wedge d \wedge e) \vee (c \wedge d \wedge f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \wedge d) \vee f)$ $= (((a \wedge b) \wedge c) \vee d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \vee c) \vee d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \vee c) \vee d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \vee c) \vee d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \vee c) \vee d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \vee c) \vee d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \vee c) \vee d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \vee c) \vee d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \vee d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \vee d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \vee d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \vee e) \wedge ((c \vee d) \vee f)$ $= (((a \wedge b) \wedge c) \wedge d) \wedge e) \wedge ((c \vee d) \wedge f)$ $= ((a \wedge b) \wedge c) \wedge ((c \vee d) \wedge f)$ $= ((a \wedge b) \wedge c) \wedge ((c \vee d) \wedge f)$ $= ((a \wedge b) \wedge c) \wedge ((c \vee d) \wedge f)$ $= ((a \wedge b) \wedge c) \wedge ((c \vee d) \wedge f)$ $= ((a \wedge b) \wedge c) \wedge ((c \vee d) \wedge f)$ $= ((a \wedge b) \wedge c) \wedge ((c \vee d) \wedge f)$ $= ((a \wedge b) \wedge c) \wedge ((c \vee d) \wedge f)$ $= ((a \wedge b) \wedge c) \wedge ((c \vee d) \wedge f)$ $= ((a \wedge b) \wedge c) \wedge ((c \vee d) \wedge f)$ $= ((a \wedge b) \wedge c) \wedge ((c$

Question #3

The following	12-bit word can be u	sed to represent	different numbers	depending on the
encoding				

The following 12-bit word can be used to represent different numbers depending on the
encoding
12b'1011_1101_0110 = 3030 (a) If the word is 2's comprehent, what is the corresponding integer?
(a) If the word is 2's comprehent, what is the corresponding integer?
0.100 - 0.010 - 10.00
(b) If we convert the word into base-4, what is the represented number?
932117
$\psi'\psi'\psi'\psi'\psi'$
(c) If we take answer in (b), write the 3's complement of the base-4 number. 43080 > 2 1
100000
(d) If the word is unsigned fixed point 6.6, what is the corresponding number?
47.54375 (011-11.01-01/0
What is the absolute accuracy of this representation? 18 x 10-3
(e) What is this word in Hexadecimal? $\frac{BDG}{11} = \frac{(01)}{13} = \frac{0110}{13}$
(e) What is this word in Hexadecimal? DV6
11 13
(f) If the word is 6E5 floating point number (IEEE format S+EEEEE+MMMMMM),
What is the bias?
What is the corresponding real number? 1.3475. Lighbit E M
vvnat is the corresponding real number? 1.31 13
(g) In base-20 system and using 3 "vigits" (base-20 digits) in 20's complement: $E = \sqrt{5}$
How would one represent a base-10 integer -1616? 15.19.4
riow would one represent a base-10 integer - 1616? (6.7)
What is the most positive value in base-10 integer that can be represented?
2 440 A solution value in pase-10 integer trial carries represented?
1,010/10 × 5 E-PINC
1,010110

1.34375 × 2 4.0.16 (116

UCLA | ECEM16/CSM51A | Spring 2019 Question #4

(a) Two 4-bit binary inputs, b1[3:0] and b2[3:0], are needs to be decoded into a single 2-hot output vector, twoh[15:0]. This 2-hot vector has up to two positions of 1's and the remainder are 0's. If b1 is the same as b2, then only a single 1 is asserted. Design this logic. You may use 2:4 Decoders as building blocks and any number of AND, OR, or INV gates. Try to minimize the amount you use. You may describe connections to avoid an overly complex drawing of every signal and line.

(b) Next, you are tasked to code the *twoh[15:0]* signals into a vector that indicates a range, similar to a thermometer code. The 16-bit input, *twoh[15:0]*, produces 16-bit outputs, *rangeh[15:0]*, whereby the positions in between the 2 asserted signals of the *twoh[15:0]* are all 1's. For instance, with b1[3:0]=4'b0110 and b2[3:0]=4'b0010, rangeh[15:0]=16b'0000_0000_0011_1110. You may use any building block we have covered in lecture as well as any number of AND, OR, or INV gates. Again you can describe connections to avoid drawing every signal and line.

twon 1 q to rangeh [15=0]. Convert twon[7:0] arbort [8:0] Occoood Cornert to thermaneter block: (T NO

do the same for n

number of mounts

7 of 8

UCLA | ECEM16/CSM51A | Spring 2019

Prof. C.K. Yang

(c) Finally, encode inverse the function of (a) by accepting the *twoh*[15:0] signal as input and output 2 binary values *bo1*[3:0] and *bo2*[3:0] to indicate the binary position of the two hot bits. You may use any building block we have covered in lecture as well as any number of AND, OR, or INV gates. Again you can describe connections to avoid drawing every signal and line.

twoh [15:87 + 8-4 - bo2[3:0].

twoh[7:0] + Equality

00000000 & Comparator

twoh[7:0] + Of 8-4 - bo2[3:0]

twoh[15:8] Equality

Equality