EEM16 Final

MARK GUEVARA

TOTAL POINTS

107.5/125

QUESTION 1
Problem #130 pts

11(a), (b)6/6
v -0 pts a is correct

v -0 pts b is correct

1.2(c)- (i) 185/ 24
v - 0 pts ¢ - correct
v -0 pts d - correct
v - 0.5 pts e - 3 product terms
v - 0.5 pts f - columns or rows
v - 2 pts g - map wrong
v - 2 pts h - incorrect
v - 0.5 pts i - 12 states

QUESTION 2
2 Problem #2 14 /15

v -1 pts Not fewest number of FAs, but correct

QUESTION 3
3 Problem #313/15

v - 2 pts missing one thing or has an extra state

QUESTION 4
4 Problem #4 20/ 20
v - 0 pts Correct

QUESTION 5
Problem #5 18 pts

5.1(a)-(c) 7/1
v - 2 pts (a) incorrect tccl (14)
v - 2 pts (a) incorrect tdcl (43)

5.2(d)-(f)7/7

Page 1

v - 0 pts Correct

QUESTION 6

6 Problem #6 9/12
v -1 pts (a) partial correct
v - 0.5 pts (b)missing reset
v - 0.5 pts (b) missing st[2:0]
v - 0.5 pts (b)missing in[0]
v - 0.5 pts (b) missing go

QUESTION 7
7 Problem #7 13/15

v -1 pts (e)incorrect setup
v -1 pts (e)incorrect hold

W
@

UCLA | EEM16/CSM51A | Spring 2018 ' Prof. C.K. Yang

Final Eﬁam

Name (Last, First): Gu,g\/mra\, Mmr‘L
Student Id #: 7OLMQZCIZ_0 1

Do not start working until instructed to do so.

1. You must answer in the space provided for answers after every question. We will
ignore answers written anywhere else in the booklet. All pages in this booklet must be
accounted for otherwise it will not be graded.

2. You are permitted 2 page of notes 8.5x11 (frqnt and back).

3. You may not use any electronic device. !

Following table to be filled by course staff only

T N A
ST Xm’gy ﬁé@?& ¥
R ‘_'.
Question 1 30 |
Question 2 15 :
!
Question 3 15 !
Question 4 20
Question 5 18
Question 6 12
| %
Question 7 . 15 '
TOTAL 125
!
|

"

“10f 14

UCLA | EEM16/CSM51A | Spring 2018 Prof. C.K. Yang

Question #1 State Machine to Logic (30))

A Mealy FSM state diagram is shown below. This is a decoder for a 3-level to 4-level encoding.

A 4-level signal is communicated between two endpoints (A, B, C, and D). This signal is the input J
to the FSM. Transitions between the levels map to 3 symbols (X, Y, and Z); these symbols are

the outputs. Note that some transitions are eliminated to enhance the quality of the
communication.

(a) (2) Explain the difference between a Mealy and a Moore FSM. d

A looce madniae’s ouﬁwl‘;s Jefgm[anl4_on ’tke evecert stede winle
a Hodly PGS OfodS o o Funghion, o te ity ook Fe qurrpt Shake |

(b) (4) Fill in the blanks in this partial state transition‘t.able.

state ini out nx__stateﬂ))
sA | Al X | SA]
-SB | B X SB
sp Bf z | sB .
s¢ | ¢} x| s¢
SP | C Y |- SC
‘ sC | Al Z | sA
SB D ; sTD

20f14

a

r ' il
UCLA | EEM16/CSM51A | Spring 2018 | Prof. C.K. Yang

Assume for the following parts that inputs, outputs and states are all one-hot encoded,
(c) (3) How many bits are needed for the input, output and states? *

i
#bitsforin= 4 i
#bitsforout= B

bits for state = 4
(d) (4) What is the logic for nx_state:SA? out:Z? You;can define your mapping for part (c) to write

this Boolean function. (n63:0] | cvl-£2:0
St + SA-cool $C:010Q | 1A-0001 C-pl100 X~ 00t 200
iw] $B-oeto §P-100C Prooto p-tooo y-oro

nx_state:SA =(Stude 2] V state i 51““}’°C7'J) A o] s To
outZ = (5e“+e(m nia(3]))V (skate [3]14 wL1])V (stake Lol Am[Z]) v (stodelz] A L)

(e) (3) If nx_state:SA is written as a fully»dlsmnctive normal form, how many product terms are
there? .

«

product terms = 3
Now assume that states, st[7.0], are assigned as gray code: SA=2'b00, SB=2'b01, SC=2'b11,
SD=2'b10. The inputs, in[1:0], are also assigned as gray code where A=2'b00, B=2'b01, C=2'b11,
D=2'b10; and outputs, out[7:0], are X=00, Y=01, Z=11.
(f) (2) How many columns (inputs+outputs)-and rows are in this truth tgble’?

L A
columns = Y
#rows=1b (7 iq nom§ deak gure oz-vslrs liw sa AT
{g) (5) Use the Karnaugh map Below to determine the Ioglc for out[0]. How many prime s .
implicants are there? How many are essential? | o ' e

1 o] ,

vouto) |+ voor | [rorr | T raar l "10"

“op" P o / d i—l ~ -é bg \

o | N O N iR J

R TN A S« 2 e 2
L]

RS TR
prime implicants = | !

|
essential prime implicants = § . ,
(h) (3) Write the Boolean expression for out[0].

out[0] = (ﬂ‘:[}] A W[l]) (5-{;[(]/\ M,DJ)I (SI:/O.J /\igfjjl\ I'A_EO]) ({:B) f\ﬁ/ﬁ“/[())

convert the FSM to a Moore Machine?

- "

(i) (4) How many states do you need if you want to

. d

states = lz (L{ shales ¥ 3 v%/ﬁ’-’v% -@“A'L)

V (shlo1ns50] n info))
v (.@}Asﬂﬂ AR)

3of 14

UCLA | EEM16/CSM51A | Spring 2018
Question #2 Logic Design (15)

Prof. C.K. Yang

A field of black (“0") and white (*1") pixels can be "blurred” into gray values by taking a weighted-
average that includes neighboring pixels as shown in the figure. Each converted gray-valued
pixel, gpix, is a 4-bit value and is computed from 9 binary inputs, py, based on the equation

gpixg[3:0] = 3 pg+ 2 L pin + i P2n.

Pz1 | P11} Pzo
P2 | Po P1o
P22 | Piz | Pz

You have available 1-bit Full Adders (FA with 3-inputs and 2-outputs) as building blocks for
implementing a design. The design should output gpix[3:0]. Use the fewest number of FAs to

achieve this task. Show your design.

3 Te . ?/E P

E‘ p‘Lw

17; P"*"P i RO*PIO*PJI*FT*FI";:PI‘L* P

S

‘LE%”‘j orr .

PP on”?‘br P‘&{P'?’B

S

| N
L] [FA) [FA 1|

l —

k

ave

1

-ETS—. T R ol ;: - & @ S
i \ (J i “T%ng \ -‘——l-———-—jr
1 _—
1 f ‘ .
e CW‘OL’J'"._— = N e :_1_____1#— :”SUWL[“:O]
| oA] A
;‘l“"‘? m z s
— [==l -
[74 _—me
1Nk r//j"" s

C

TA

|

4 of 14

|

r

Jq"”‘[ﬂ ¢ J("ﬂ[z] gl gpils)

__/

e p———e —

= mpC———er, Al 2
==

00{- fvo l,’h\'\v/\

Flow olwnr® ‘

e WE# 5

n oD Q"O"‘

&l [L3
o~ I

<
- -

)
(-]

o

H
‘-:.P

|

2
Q—-z

L]
&

oD 65
T

©
[
Q

]

I

D)l

UCLA | EEM16/CSM51A | Spring 2018
Question #3 FSM State Diagram (15)

| Prof. C.K. Yang

The input to an FSM, Y, is a string of 1's and 0’s. Design a Moore FSM that detects when a “01”

sequence is followed a “10” sequence. The F

SM is resetfinitialized to a state for which prior inputs

are all 0's. An example of the input and outplit is shown below and key transitions are underlined.

Note that “010” does not constitute a “01" fi

ollowed by a “10”. The output, Z, asserts for only 1

cycle when the sequence is detected. As a design ccf:mstraint, use the fewest number of states.

Y = 00001110001001010101101111

00000000100000010000001000
o ~ ~

2

50of 14

UCLA | EEM16/CSM51A | Spring 2018

M

Prof. C.K. Yang

Question #4 System Partitioning (20)
The following algorithm calculates the combinatorics function C(n,k)=n!/(n-k)!k! (commonly

referred to as n-choose-k or nCk).

S

The flow diagram is already designed as shown below. A

n = n_in;
k = k:in; signal, go, is an input to the controller that triggers this
comb = 1; algorithm. Qutput, done, is asserted by the controller when
while (n > 0) { the algorithm completes and is waiting for the go signal. The
if (n>k) previous computation is held in the register, comb. You are
L fgih = SoRb=E] to complete the controller and datapath design.
else
comb = comb/n; '
N~
}
done = 1

{a) (10) The datapath blocks available to you are also shown below (a combined multiply/divide

module, an add/subtract module, and a zero detect module). You may also use as many 2:1
MUX as you choose (Note that you can only use 2:1 MUX so the select signals for each MUX
is a single-bit signal from the controller). You céan ignore the bit-width of any of the signals.
Show the necessary connections within the datapath and any signals that need to pass as

inputs to/from the controller.

Yoo Sheok
2= Q0

Q{A";‘J/r s

Can. @
n/ e
or (M- (A—;:

quZero
y

El o Y Zero
wQ . * Detect
4 ——ﬁ 2 —L
C 4
,r g comt 5 == ’
09. 1 Z | 2 sjaiv g
= —
| 130 r
= div?
P a Mult/Div
& (5t Module s
Mot DN o {a*orth)
{1 b
o |5
l 2
Led
S— = A2
o]
N m..__. . & U7, ;
4rnb<-comb n ”comb<—-combln o] ;": a Add/Sub
' = Mfdli:f out —v—‘
n<_n1 Iogcg {ator-b)

6 of 14

)

UCLA | EEM16/CSM51A | Spring 2018
(b) (10) Design a Moore FSM for the control
to the datapath on the FSM state diagra

n<=n_in
k<=k_in
combe=1

5%
@A

o=

comhbe=comb™n] [comb<=combln

Sy \1

&) 7,7

ear%a

!
[
Prof. C.K. Yang

er. Indicate the desired control signals from controller
m. i
|

- Start
dosg = |

/{oo«c!, - Q &
sell = G

‘g

sS4

e C
Joad,
sl =0

sel 22\

-

7 of 14

UCLA | EEM16/CSM51A | Spring 2018 Prof, C.K. Yang

Question #5 Timing and Pipelining (18)

The following combinational logic block can be broken down into modules. Each module have
their delay as shown. For each module, the propagation and contamination delay are the same
(to = t3) with the except of two blocks where the (t:,ts) is shown-ih the block. The registers comprise

of DFF with the properties ts = 3, tv=1, tca = {1.2).

- .

l”’ \\\
Pl N A
o |In out| @
G- (3.5) »(1,15) 10 "
- % : ‘ g

P
<
e
=~
</

}

4 8

\. Combinational Logic Block

\'i "

(a) (4) Determine the contamination.and propagation delay of the combinational logic block.
tc,= [+ 3+ 1 +10 =7 '
ticL=19 4 4 +6+4+§ +6 +q ¥I0 =)’45) - "i
~—

v

(b) (3) What is the minimum cycle time of the combinational logic block?
min(Tcycle)= -Ld}c(;\ :” EJ,M“ + bs

= ys t 3 =03

(¢) (4) We can minimize the cycle time by inserting registers. Show on the diagram below where
to insert the register(s). Indicate a register with a line. Use as few registers as possible.

~

//‘— QAL”\S \\\
2 |in / ‘out Y
‘% (3,5) 1,15 10 ‘:ﬁ,{
5 ' &
6 6 ~ 4
bp“"f]q
4 - s
i

1
%, Combinational Logic Block #
-

~ -

A A=t
Eg= 15

8 of 14

"3l

UCLA | EEM16/CSM51A | Spring 2018 ;
(d) (2) Based on the answer in (c) determine the new minimum cycle time.

min(Towce) = Yman + £ +44 i
5 44 47 _:{:iZO“)

(e) (8) During verification of the design in (d), an engineer found that the DFF hold time is actuaily
longer, t4=3. Does this pose a problem? Explain your answer.
(Yes3 or No

Prof. C.K. Yang

Explain:)
£, S bcateom -0 hold, hae JimVahron.
s+l 347

V\(Thyre 1y @ }/W}o! th-b Vfﬁ?lﬁbrO/\., GCross TL“O . ol
('&m(b‘s)) (1) 1) fm«OM(",,sMw B Wld{ Hme 1 flar«w%& e botel wnh:z';ﬁéf
(f) (2) Name as many ways as you can to fix this pré:blem?

- ML & oie)ﬂv} o Tre M"Ova&/)e !!ﬁwr["l‘s callsing_Pe Fmb‘gm ow? Ingreast. ix](){, Yot
- I}S@ & A,tﬂ:gre/rf' UF_F W,'-}-):, q slt'MGv”w t’lﬂ]dt ‘hM/Ca
- l)%(/ a a{,\ffe,rer)' mode wih & IOAGJ‘ contaminghinn aee[ou&

-

9 of 14

UCLA | EEM16/CSM51A | Spring 2018 Prof, C.K. Yang
Question #6 (12)
An incomplete Verilog code for a module is shown below:

module final (

input [3:0] st,

output [3:0] nx_st,

input [1:0] in,

output [1:0] out,

input go, reset, done, clock
Vi

<{a) missing TYPE> [1:0] out;
<(a) missing TYPE> [2:0] nx_st; ‘

always @{<(b) missing activation list>) begin
case (st)
— 3'b000: nx_st=3'b00%;
3'p001: nx_st=3'b0L0;
3'p010: ! - I, i
if (in(0]) i= go) N #
nx_st=3'b100;
else 5
nx_st=3'b010;
3'bl00:
if (in[0]) != go) § .
nx_st=3'b100; : ~ .
else)
nx_st=3'b001;
default:
nx_st = {in{0),1'b0, reset};
endcase

..

end

assign out[0] = nx_st(L] | in[l]; '

//{c}) out[l] is the output of a mux that selects 1'b0 when reset else nx_st(0]
endmodule

(a) (2) What should be the declared type for the following signals:
aut g‘ﬂc ~[1:0] out; ’

3

I’e§ [2:0] nx_st;

{(b) (2) What should go in the activation list of the always @()? Choose only the signals that needs
to be there. You may not use *,

Activation list = roseoéaa doule

{c) (5) The signal, oul[1], is the output of a 2:1 MUX that uses input, resef, to choose between
input of 1’b0 (when reset==1), and nx_stf0] (when reset==0). Write the Verilog code for this
signal in three different ways (continue next page):

// Library module provided

module mux2l{muxout, muxseldA, inputd, inputB);
// muxselA ==1 chooses inputa
// module details not shown

endmodule

10 of 14

R4

ol

UCLA | EEM16/CSM51A | Spring 2018 Prof. C.K. Yang

!

Declarative Verilog: r & + Lo
O [}) !
mﬁsidw au{‘EI] = f@*’:@t *I b | Lol] J
|
I
Structural Vqri[og (using the library module abovle) '

mrll potews (013 wseh 150, wxsto])
!l
I
Procedural Verilog (note thgout }Lamdeclared differeqtlv):
qlWaas @ (Lresé)-, of Mﬁkto])i [%a,,w

[lresck) beg™ |
| (w»m %\w ; |

(’,nob else WV !E
ot1] naistlo] i| ’

oy Di:0]odt

(d) (3) Four different ways of implementing a function is shown below. Which of them are the
same? Circle all that are the same. I

{1)
Ca;S(@posedge clock) begin 0

y <= z; /2_’_% N

X <= Y . _
end A x-olo&:g
(2)
always (@posedge clock) begin

Y = %

X =y; // P 4 -‘:31""% &

end

I
Ij
$ @posedge clock) begin I

{
32” //xzoldaé})g}% |

~

{4)

always {@posedge clock) begin
Z2=Yi = v!d‘- a’"/'t
yexr 7 BTG 4

end

11 of 14

UCLA | EEM16/CSM51A | Spring 2018 Prof, C.K. Yang
Question #7 Short Answers (15)) -
(a) (4) For the following Karnaugh map, the Boolean expression for the function

Z= (mAA-BA=C)V(AA-BAD)V(AA-BAC) ’

AB
z | w00 | "03 | 117 | "10"
w0’} {1}] o o | o
o o 1 | o 0 1)
17| o 0 o | ()
"0 | o 0 o | \3

What input conditions and transition has a potential for causing a glitch (static hazard) at the
output?

\\arﬁ' A '[;rmns;:t"om'n whe (A A1B A.IC A D’) o (qA /L‘IB A qO A Q’J)
v, WS g b
(b) (2) How would you resolve the issue in (a) by adjusting the Boolean expression?

2= ("An"B 27)(An 1B A0)u(AAB A C)V(BATC AD)

(c) (3) If you only have 2-input AND gates and Inverters availabie, how would you build a 2:1
multipiexer? (out selects between inpA and inpB with the select signal, se/A)

\

e . D L Do—ouk

e

‘“FB !Do——D ‘ ,

sel A L. 4

(d) (3) If you only have 2:1 MUX and Inverters available, how would you implement Z = X xor
Y?

X o :
¥ L-I>Df/‘ Z -

4

12 of 14

7 I|
UCLA | EEM16/CSM51A | Spring 2018 i Prof. C.K. Yang
(e) (3) A designer modified the basic DFF as shown|below to make a GDFF where the clock
signal is ANDed with an Enable signal. This appfroach is known as “"clock gating”. How does
the GDFF's characteristics compare to that of the DFF? Select the answer.

D, D | Q Q
DFF
GDFF

Setup: ts eore > ts_per ts_eorr < ts prr

Hold: tH_coFF > th_DFF tH_corr = th_prr
Clock-Q Delay: @ tcoq_eprF = tcea prr tozn eorF < toza prr

13 of 14

UCLA | EEM16/CSM51A | Spring 2018
<Extra blank page for work>

Prof. C.K. Yang

14 of 14

#

