Quiz #1

Name (Last, First): Student Id #:

Do not start working until instructed to do so.

- 1. You must answer in the <u>space provided</u> for answers after every question. We will ignore answers written anywhere else in the booklet. <u>All pages in this</u> <u>booklet must be accounted</u> for otherwise it will not be graded.
- 2. This quiz is closed book/notes.
- 3. You may not use any electronic device.

Following table to be filled by course staff only

	Maximum Score	Your Score	
TOTAL	20	20	

UCLA | EEM16/CSM51A | Winter 2020 <intentionally blank – you may use this for scratch work>

Prof. Xiang 'Anthony' Chen

UCLA | EEM16/CSM51A | Winter 2020

Prof. Xiang 'Anthony' Chen

Recall from Homework #1 where we have the 4 DNA nucleotides of G, C, T, and A. Let us represent them using 4-bit codes, T[3:0], where G=4'b0101, C=4'b1101, T=4'b1111, and A=4'b1011. A logic is used to indicate whether the input t[3:0] corresponds to a nucleotide. The output of this logic is N.

(a) Complete the truth table for N.

G= 0101 C= 1101 A= 1011

T[3]	T[2]	T[1]	T[0]	N
1	1	1	1	1
1	_1	1	0	0
	ı	0		1
	1	0	0	0
- 1	0	1		
]	0	1	0	0
1	0	0	1	0
١	0	0	0	0
0		1	1	0
0	1	l	0	0
0	1	0	1	1
0	1	0	0	0
0	0	1		0
0	0		0	0
0	0	0	1	0
0	0	0	D	0

(b) Write the expression for N in Fully-Disjunctive Normal Form.

$$N = (T[3] \land T[2] \land T[1] \land T[0]) \lor (T[3] \land T[2] \land \neg T[1] \land T[0]) \lor (T[3] \land \neg T[2] \land T[1] \land T[0]) \lor (\neg T[3] \land T[2] \land \neg T[1] \land T[0])$$

(c) Write the expression for $\neg N$ in Fully-Conjunctive Normal Form

UCLA | EEM16/CSM51A | Winter 2020

T[1:0]

Prof. Xiang 'Anthony' Chen

(d) Draw the Karnaugh Map of the Truth Table. Circle the prime implicants, indicate which one(s) are essential (if any). contial

		T[3:2]	essemil	
	00	01	11	10
00	0	0	60	0
01	0		70	D
11	0	0	(1)	DE
10	0	0	0	D

essenti-1

(e) Using the K-map in (d) as the minimized 2-level logic, write the sum-of-product expression using the fewest number of terms and literals.

$$(T[2] \land \neg T[1] \land T[0]) \lor (T[3] \land T[1] \land T[0])$$

$$N =$$

(f) Can you do better (reduce the number of literals), by using Boolean properties? If so, write the expression and indicate which property you used.

$$N = T[0] \wedge (T[2] \wedge T[1]) \vee (T[3] \wedge T[1])$$

Property: Distributive

(g) Use De-Morgan's theorem and write the complement of the function in (f).

(ħ) Show a combinational circuit that implements N from (f) (with T[3:0] as inputs) using only 2input NAND gates.

