# ECE M16/CS M51A Midterm

# Jeremy Tsai

**TOTAL POINTS** 

# 90 / 105

#### **QUESTION 1**

# 1 Question 1-a 4/5

- 0 pts Correct
- 1 pts Missing 2x2 PI top/bottom right corner
- 1 pts Missing bottom row PI
- 1 pts Missing Upper Center PI
- 1 pts Missing Lower Center PI
- 1 pts Missing Right Center PI

# $\checkmark$ - 1 pts Introducing additional wrong implicants (not

### PIs)

- 5 pts Ambiguous circling.

#### **QUESTION 2**

# 2 Question 1-b 5 / 5

# √ - 0 pts Correct

- 1 pts Missed center EPI
- 1 pts Missed right center EPI
- 1 pts Missed 2x2 top/bottom-right corner EPI
- 1 pts Missed bottom row EPI
- **0.5 pts** Missed bottom row EPI but consistent with previous answer
- 1 pts Mistake made with EPI expression (circle is translated wrong)
- 1 pts Inconsistent with previous answer (given previous answer the answer given here is wrong)
- 0.5 pts Missed 2x2 top/bottom right EPI but consistent with previous answer
  - **0.5 pts** \\* + notation error
  - **5 pts** No answer
  - 2 pts A should be B, C should be D

#### QUESTION 3

### 3 Question 1-c 5 / 5

# √ - 0 pts Correct

- 1 pts Missed 2x2 bottom right corner

- **0.5 pts** Expression is wrong from the circle.

(Wrong translation from circle).

- 1 pts Expression inverses are wrong (dual form is given).
  - 1 pts Unnecessary PI included
  - 2 pts POS is given when SOP is asked.
  - 1 pts Top row PI is missed.
  - 1 pts Left center PI is missed
  - 1 pts Center PI is missed.
  - 1 pts Inverse at the beginning is wrong.
  - 5 pts Should have started with 0s.
- 2 pts A should be B and C should be D
- 0.5 pts Click here to replace this description.
- 1 pts Simplifications are wrong.
- 4 pts Formed correct POS but nothing else.

### **QUESTION 4**

#### 4 Question 2-a 5/5

- √ + 1 pts Answered yes.
- √ + 1 pts Wrote the correct form
- √ + 3 pts Provided proof
  - 1 pts Proof incomplete
  - + 5 pts All correct

# **QUESTION 5**

### 5 Question 2-b 6 / 6

- + 1 pts Wrote XOR to Boolean
- + 2 pts Expanded the Boolean expression
- + 1 pts Simplified the expanded expression
- √ + 6 pts Got the final DNF
  - + 0 pts Nothing
- 1 pts Did not simplify / not DNF / at least one term is wrong

#### QUESTION 6

### 6 Question 2-c 3/6

- + 6 pts Got the minimal terms
- √ + 2 pts Built on the previous answer
- √ + 1 pts Drew the k-map
  - + 2 pts Verified using k-map
  - + 0 pts Nothing
  - 1 pts minor mistake

### QUESTION 7

# 7 Question 2-d 7/8

- + 2 pts Used NOR for other logics
- + 2 pts Gate diagram for previous logic
- √ + 8 pts All correct
  - + 0 pts Nothing
- √ 1 pts Not minimum / minor issue

### **QUESTION 8**

## 8 Question 3-a 4/4

- √ + 4 pts Correct
  - + 0 pts Wrong

#### **QUESTION 9**

- 9 Question 3-b 3/3
  - √ + 3 pts correct
    - + 0 pts wrong

## **QUESTION 10**

- 10 Question 3-c 4 / 4
  - √ + 4 pts correct
    - + 0 pts wrong
    - + 2 pts partially correct from previous wrong answer
    - + 1 pts taking 4's complement

#### **QUESTION 11**

# 11 Question 3-d o/3

- + 3 pts Correct
- √ + 0 pts Wrong

#### **QUESTION 12**

# Question 3-e 11 pts

- 12.13-e-14/4
  - √ + 4 pts Correct
    - + 0 pts Wrong

### 12.2 3-e-2 4 / 4

- √ + 4 pts Correct
  - + O pts Wrong
  - + 2 pts partially correct from previously wrong

### answer

+ 1 pts Taking 19's complement

# 12.3 3-e-3 3/3

- √ + 3 pts Correct
  - + 0 pts Wrong
  - + 1 pts partially correct

#### **QUESTION 13**

## 13 Question 4-a 8/8

- √ + 8 pts Correct
  - + 4 pts Used blocks/non-gate components but

### correct output

- + 4 pts Carry wrong
- + 4 pts Difference output wrong
- + 0 pts No design
- + **0 pts** Wrong output for carry and difference

#### **QUESTION 14**

# 14 Question 4-b 6/6

- √ + 6 pts Correct
  - + 3 pts Didn't use half-subtractors but correct output
  - + 3 pts carry out wrong
  - + 3 pts difference wrong
  - + 0 pts Wrong/No design

## **QUESTION 15**

# 15 Question 4-c 6.5 / 7

- √ + 7 pts Correct
  - + **6.5 pts** Missing first cin but otherwise correct
- $\checkmark$  0.5 pts Missing labels for the bit order (order

# does matter)

- + 5 pts Close design but not correct
- + 5 pts Subtracted cin from all bits
- + 3 pts Incomplete/Significant design issues but on right track
  - + 2 pts Implemented wrong device

- **0.5 pts** Implemented using half-sub instead of fullsub
  - + 0 pts Wrong/No design

#### **QUESTION 16**

## 16 Question 4-d 12.5 / 14

- √ + 2 pts Correct addition function
- √ + 2 pts Correct subtraction function
- √ + 3 pts Correct negation function
- √ + 2 pts Correct multiplication function
- √ + 3 pts MUXs used properly for switching outputs
  - + 2 pts Completed design/put together

# properly/correct outputs

- 0.5 pts Unclear which wires go where/splitting of

#### wires

- 0.5 pts Unclear which inputs are which for

### functions

- 0.5 pts Wrong codes correspond to functions
- √ 0.5 pts Wrong names for adder/subtractor
  - + 0 pts No Design
- + 1 Point adjustment
  - pc for overall design +1
- 1 Carry for negation should be 0

#### **QUESTION 17**

# 17 Question 5 0 / 5

- + 5 pts Correct
- + 4.5 pts Correct design idea; minor mistake
- + 4 pts Correct design idea; wrong codes match
- + 3 pts Correct design idea; not

# complete/significant mistake

- + 3 pts Gray-Binary converters wrong
- + 2 pts Did not handle Gray codes properly/Wrong

## idea for codes

+ 1 pts Gray-binary converter only/Fundamentally wrong design

√ + 0 pts No/Wrong design

# Midterm Exam

Name (Last, First): Tsai, Jeremy

Student Id #: (05335484

Student to Left: A

Student to Right:  $\triangle lex M$ .

# Do not start working until instructed to do so.

- 1. You must answer in the <u>space provided</u> for answers after every question. We will ignore answers written anywhere else in the booklet. <u>All pages in this booklet must be accounted</u> for otherwise it will not be graded.
- 2. You are permitted 1 page of notes 8.5x11 (front and back).
- 3. You may not use any electronic device.

Following table to be filled by course staff only

|                 | Maximum<br>Score | Your Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question 1      | 15               | According to the same of the s |
| Question 2      | 25               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Question 3      | 25               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Question 4      | 35               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Question 5 (EC) | +5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TOTAL           | 100              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# Question #1 (15 pts)

Consider the following Karnaugh Map for the Boolean function, Y. A blank truth table is provided for your convenience.

|    |      |        |      | lΒ '  |      |
|----|------|--------|------|-------|------|
|    |      | "00"   | "01" | "11"  | "10" |
|    | "00" | 0      | 0    | 1/1/2 | V1X  |
| CD | "01" | 0      | 1    | 0     | (2)  |
| OD | "11" | 0      | (1)  | 0 -   | 0-   |
|    | "10" | N. Car | 1    | X     | (X)  |

|   | A | В | С            | D | Y   |
|---|---|---|--------------|---|-----|
|   | 0 | 0 | 0            | 0 | 0   |
|   | 0 | 0 | 0            | 1 | 0   |
|   | 0 | 0 | 1            | 0 | 1   |
|   | 0 | 0 | 1            | 1 | 0   |
|   | 0 | 1 | 0            | 0 | 0   |
|   | 0 | 1 | 0            | 1 | = 1 |
|   | 0 | 1 | 1            | 0 | 1 1 |
|   | 0 | 1 | 1            | 1 | 1   |
|   | 1 | 0 | 0            | 0 | _ 1 |
|   | 1 | 0 | 0            | 1 | 1   |
|   | 1 | 0 | 1            | 0 | ×   |
|   | 1 | 0 | 1            | 1 | 0   |
|   | 1 | 1 | 0            | 0 | FII |
|   | 1 | 1 | 0            | 1 | 0   |
| i | 1 | 1 | 1            | 0 | X   |
|   | 1 | 1 | 1<br>(5 pts) | 1 | 00  |

How many prime implicants are there?

(b) Write the Boolean (sum-of-product) expression of the essential prime implicants of (b) (if any). (5 pts)

Essential Prime Implicants =  $\frac{(7AABAD)v(CAD)v(AAD)}{v(AABAC)}$ 

(c) Express as a minimal sum of product, ¬Y. (5 pts) The K-map is provided for your convenience.

| -  | _ |
|----|---|
|    | _ |
| 44 | _ |
|    |   |

|    |      | "00" | "01" | "11" | "10" |
|----|------|------|------|------|------|
|    | "00" | 0    | 0    | 1    | 1    |
| CD | "01" | 0 6  | 1    | 0    | 1    |
|    | "11" | 0    | 1    | 0 1  | 0/   |
| ł  | "10" | 1    | 1    | Х    | Х    |

$$\neg Y = (\neg A \land \neg C \land \neg D) \lor (\neg A \land \neg B \land D) \lor (\neg A \land \neg B \land D)$$

$$(A \land C) \lor (A \land B \land D)$$

# (-A M-BIAC) V(-AM-BMC) V(AMBMC) V(AMBMC) V(AMBAC)V(AMBAC)V(AMBAC)V(AMBAC)

UCLA | ECEM16/CSM51A | Winter 2020 Prof. Xiang 'Anthony' Chen Question #2 (25 pts) (a) Is DeMorgan's theorem still true with more than two variables? If so, prove it in the case of three variables x, y and z. (5 pts) (b) Rewrite the following Boolean equation in (Disjunctive) Normal form. (6 pts)  $f = \overline{A \oplus B} + \overline{B \oplus C}$ where  $\oplus$  means XOR operation, i.e.,  $A \oplus B = A \overline{B} + \overline{A} B$   $(A \land B)$ ¬(ABB) V¬ (BBC) Answer: = - ((AMB) V(AAAB)). V - ((BA-C) V (-BAC)) = - (QV-A) 1 (AVB) 1 (-BV-A) 1 (BVB))V 7(BVBTA(BVC)A(7CV-B)AGEVCT) = 7(AVB) V7(7BV7A) V7(BVC) V7(7CV7B) =(A MB)V(BAA)V(BAC)V(CAB)  $f = \frac{(-A \Lambda - B \Lambda c) \nu (-A \Lambda - B \Lambda - c)}{(-A \Lambda - B \Lambda - c) \nu (-A \Lambda - B \Lambda - c)}$ (c) Simplify f from (b) to a minimum sum-of-products. List which Boolean properties you use at

each step of the simplification. Hint: you may use K-map to verify your answer. (6 pts)

Answel trom b =(7AA-BAC)V(AAMBA-C)V(AABAC)V(AABA-C)V(AMBA-C)V(AAMBA-C)V(AAMBA-C)

V(ANBAC) V(TANBAC) (idempotence)

= (-AMAB) v(BMA) v(ABMAC) v(CMB) (obsorption).

F= (TANTB)V(BNA)V(TBNTC)V(CNB)

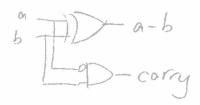
# UCLA | ECEM16/CSM51A | Winter 2020

Prof. Xiang 'Anthony' Chen

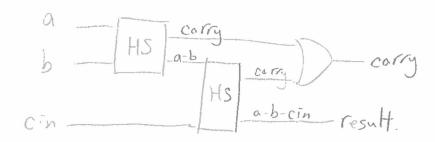
(d) With only 2-input NOR gates, implement f with a minimal number of gates. Draw the gate diagram. (Note: no complemented inputs are given) (8 pts)

(-AM-B) V(BAA) V(-BA-C) V(CAB)

| UCLA   ECEM16/CSM51A   W<br>Question #3 (25 pts)       |                                                                         | Prof. Xiang 'Anthony' Ch              | en                           |
|--------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------|------------------------------|
| The following 12-bit word encoding                     | can be used to represent different 6432 16 2 4 2 1                      |                                       | 28+256<br>1217<br>256<br>403 |
| (a) If the word is 2's comp                            | element, what is the corresponding                                      | g integer? (4 pts)40->                | 403                          |
| (b) If we convert the word (3 pts)                     | (treated as unsigned) into base-                                        | 4, what is the represented number?    |                              |
| (c) If we take answer in (b complement of the bas      | ), extending how we define 1's co<br>e-4 number. (4 pts)                | omplement for base-2, write the 3's   |                              |
| (d) What is this word in He                            | exadecimal? (3 pts) C6D                                                 |                                       | 1                            |
| (e) In base-20 system, ass<br>"vigit"). For example, 0 | ume each digit is now 00, 01, 02<br>1,19 is 39 in decimal. Using 3 "viç | , 09, 10, 11,19 (each called a pits": | 400                          |
| How would one represe                                  | ent a base-10 integer 1246? (4 pt                                       | s)326                                 | 3×400 = 20<br>2×20 = 40      |
| What's the 20's comple<br>(4 pts)                      | ment representation of -1246 (i.e                                       | the 20's complement of the 1246)      | +   = 6                      |
| can be represented? (3                                 | pts)                                                                    | itive value in base-10 integer that   |                              |
| 9.19.19 = 9*                                           | 202+19*20+19 = 6                                                        | 1 * 400 + 380 + 19                    |                              |
|                                                        |                                                                         | 3600+399=3999                         |                              |


# UCLA | ECEM16/CSM51A | Winter 2020 Question #4 (35 pts)

Prof. Xiang 'Anthony' Chen


(a) Implement a one-bit "half-subtractor" from gates. The carry-out of this subtractor is 1 when the result is -1. The truth table for this is shown below: (8 pts)

| а  | b  | a-b | "carry" |
|----|----|-----|---------|
| 0  | 0  | 0   | 0       |
| 00 | 1  | 1   | 1       |
| 1  | 0  | 1   | 0       |
| 1  | 11 | 0   | 0       |

half subtractor:



(b) Implement a "full-subtractor" from "half-subtractor" blocks. (6 pts)



# UCLA | ECEM16/CSM51A | Winter 2020

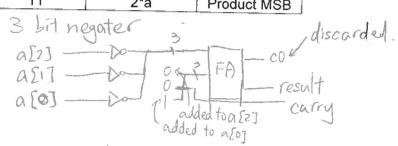
Prof. Xiang 'Anthony' Chen

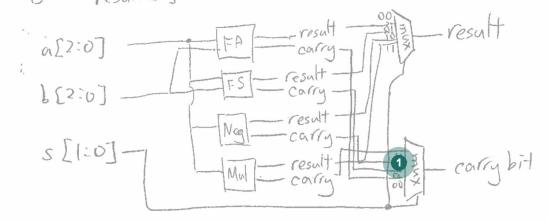
(c) Implement a 3-bit "subtractor" from 1-bit "full-subtractor" blocks. (7 pts)

$$a[i]$$
 $b[i]$ 
 $FS$ 
 $-co[z]$ 
 $co[i]$ 
 $-result[i]$ 

where co[i] represent the carry i E{0,1,2} and result [j] are the results of subtraction [ { \ 0,1,2,3 \ }

# UCLA | ECEM16/CSM51A | Winter 2020


Prof. Xiang 'Anthony' Chen


(d) Processors use a block called an ALU (Arithmetic Logic Unit) as part of their processing capability. Here we will implement a very basic ALU with a total of 4 functions, selected by a 2-bit code. Using the building blocks discussed in lecture and the 3-bit subtractor block, implement a 3-bit ALU that can add, subtract, negate one argument, and multiply by 2. The select codes are listed in the table below. Note that there are 3 inputs (3-bit a, 3-bit b, and the 2-bit select code) and 2 outputs (3-bit result and a 1-bit carry). (14 pts)

Hint: Multiplying a number is like shifting the bits to the left and using 0 as the lowest bit. An example: a = 1 = 3'b001 -> 2a = 2 = 4'b0010

| _ 5 | Select Code | Result (3-bits) | Carry bit   |
|-----|-------------|-----------------|-------------|
|     | 00          | a + b           | carry out   |
|     | 01          | a-b             | carry out   |
|     | 10          | -a. ∠           | Ó           |
| L   | 11          | 2*a             | Product MSB |

2's complement





Question #5 (Extra Credit - 5 pts)

Implement a 4-bit Gray code +1 incrementor using building blocks (no gates). The 4-bit Gray codes are shown below.

| Decimal<br>Number | Gray Code |
|-------------------|-----------|
| 0                 | 0000      |
| 1                 | 0001      |
| 2                 | 0011      |
| 3                 | 0010      |
| 4                 | 0110      |
| 5_                | 0111      |
| 6                 | 0101      |
| 7                 | 0100      |
| 8                 | 1100      |
| 9                 | 1101      |
| 10                | 1111      |
| 11                | 1110      |
| 12                | 1010      |
| 13                | 1011      |
| 14                | 1001      |
| 15                | 1000      |