Midterm Exam

Name (Last, First): Zhao, Liqi

Student Id #: 905/54257

Student to Left: Wang, Michael Student to Right Wy Tang Chao,

Do not start working until instructed to do so.

- 1. You must answer in the <u>space provided</u> for answers after every question. We will ignore answers written anywhere else in the booklet. <u>All pages in this booklet must be accounted</u> for otherwise it will not be graded.
- 2. You are permitted 1 page of notes 8.5x11 (front and back).
- 3. You may not use any electronic device.

Following table to be filled by course staff only

	Maximum Score	Your Score
Question 1	15	The Supplication of Supplicati
Question 2	25	
Question 3	25	
Question 4	35	
Question 5 (EC)	+5	
TOTAL	100	

Question #1 (15 pts)

Consider the following Karnaugh Map for the Boolean function, Y. A blank truth table is provided for your convenience.

				BA	
		"00"	"01"	"11"	"10"
	"00"	0	0	14	1
CD	"01"	0	1 1	0	1/4
c 5("11"	0	(1)	0	0
_ {	"10"	1 4	1	X	X

Α	В	С	D	Υ
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	(4)
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
11	0	1	1	
_ 1	1	0	0	
1	1	0	1	_
1	1	1	0	
1	1	1	1	

(a) Circle the prime implicants on the map. (5 pts)
How many prime implicants are there?

(b) Write the Boolean (sum-of-product) expression of the essential prime implicants of (b) (if any). (5 pts)

Essential Prime Implicants = $(\neg A \land B \land D) \lor (C \land \neg D) \lor (A \land \neg B \land \neg C) \lor (A \land \neg D)$

(c) Express as a minimal sum of product, ¬Y. (5 pts) B.

The K-map is provided for your convenience.

	AB			
	"00"	"01"	"11"	"10"
"00"	(0)	0	<u></u> 1	1
"01"	(0)	1	00	1
"11"	0	1	0	(0)
"10"	10.1	1	X	X
	"01" "11"	"00" 0 "01" 0 "11" 0	"00" "01" "01" 0 1 "11" 0 1	"00" "01" "11" "00" 0 0 1 "01" 0 1 0 0 1 "11" 0 1 0

$$\neg Y = (\neg A \land \neg C \land \neg D) \lor (\neg A \land \neg B \land D)$$
$$\lor (A \land B \land D) \lor (A \land C)$$

UCLA | ECEM16/CSM51A | Winter 2020 Question #2 (25 pts)

Prof. Xiang 'Anthony' Chen

(a) Is DeMorgan's theorem still true with more than two variables? If so, prove it in the case of three variables x, y and z. (5 pts)

Yes consider
$$(\chi \Lambda y \Lambda z) = \neg(\tau(\chi \Lambda y) \vee \tau z) = \neg(\tau(\chi \Lambda y) \vee \tau z) = \neg(\tau(\chi \Lambda y) \wedge \tau z) = \neg(\tau(\chi \Lambda y) \wedge \tau z) = \neg(\tau(\chi \Lambda y) \wedge \tau z) = \neg(\tau(\chi \Lambda \gamma y) \wedge \tau z) = \neg(\tau(\chi \Lambda \gamma y) \wedge \tau z)$$

So the DeMorgan's theorem still works

(b) Rewrite the following Boolean equation in (Disjunctive) Normal form. (6 pts)

 $f = \overline{A \oplus B} + \overline{B \oplus C}$ where \oplus means XOR operation, i.e., $A \oplus B = A\overline{B} + \overline{AB}$

Answer:
$$f = (\overline{A}\overline{B} + \overline{A}B) + (\overline{B}\overline{C} + \overline{B}C)$$

 $= (\overline{A}B \cdot \overline{A}B) + (\overline{B}C \cdot \overline{B}C)$
 $= (\overline{A}+B) \cdot (A+\overline{B}) + (\overline{B}+C) \cdot (B+\overline{C})$
 $= \overline{A}A + BA + \overline{A}B + BB + BB + CB + \overline{B}C + \overline{C}$
 $= AB + \overline{A}B + \overline{B}C + BC$
 $= \overline{A}BC + \overline{A}BC + \overline{A}BC + \overline{A}BC + \overline{A}BC + \overline{A}BC$
 $f = \overline{A}BC + \overline{A}BC + \overline{A}BC + \overline{A}BC + \overline{A}BC + \overline{A}BC$

(c) Simplify f from (b) to a minimum sum-of-products. List which Boolean properties you use at each step of the simplification. Hint: you may use K-map to **verify** your answer. (6 pts)

Answer:
$$\frac{ABC + \overline{ABC} + \overline{ABC}}{+\overline{ABC} + \overline{ABC}}$$

$$= AB + \overline{BC} + \overline{\overline{ABC}} + \overline{\overline{ABC}}$$

$$= AB + \overline{\overline{BC}} + \overline{\overline{ABC}}$$

$$= AB + \overline{\overline{BC}} + \overline{\overline{ABC}}$$

$$= AB + \overline{\overline{BC}} + \overline{\overline{AC}}$$

$$= AB + \overline{\overline{BC}} + \overline{\overline{AC}}$$

$$f = BC + AB + \overline{AC}$$

(d) With only 2-input NOR gates, implement f with a minimal number of gates. Draw the gate diagram. (Note: no complemented inputs are given) (8 pts)

$$\overline{B}C + AB + \overline{A}C$$

$$= (B+C) + (\overline{A}+\overline{B}) + (A+\overline{C})$$

10 NOR gates are needed

$$\frac{256}{18} = \frac{256}{19 + 128} = 147$$

UCLA | ECEM16/CSM51A | Winter 2020 Question #3 (25 pts)

00010010011

Prof. Xiang 'Anthony' Chen

The following 12-bit word can be used to represent different numbers depending on the encoding 111001101100

12b'1110_0110_1101

- (a) If the word is 2's complement, what is the corresponding integer? (4 pts) ___ 403
- (b) If we convert the word (treated as unsigned) into base-4, what is the represented number? (3 pts) 321231
- (c) If we take answer in (b), extending how we define 1's complement for base-2, write the 3's complement of the base-4 number. (4 pts) 012103
- (d) What is this word in Hexadecimal? (3 pts) E6D
- (e) In base-20 system, assume each digit is now 00, 01, 02, ... 09, 10, 11, ... 19 (each called a "vigit"). For example, 01,19 is 39 in decimal. Using 3 "vigits": How would one represent a base-10 integer (1246? (4 pts) _______03,02,06

What's the 20's complement representation of -1246 (i.e. the 20's complement of the 1246)? (4 pts) 16, 18, 14 19,19,19

Using the first vigit as the sign vigit, what is the most positive value in base-10 integer that can be represented? (3 pts) 20%2 - 1

UCLA | ECEM16/CSM51A | Winter 2020 Question #4 (35 pts)

Prof. Xiang 'Anthony' Chen

(a) Implement a one-bit "half-subtractor" from gates. The carry-out of this subtractor is 1 when the result is <u>1</u>. The truth table for this is shown below: (8 pts)

а	b	a - b	"carry"
0	0	0	0
0	1	1	1
11	0	1	0
11	1	0	0

$$a-b=a XOR b$$

 $corry=b AND \bar{a}$

(b) Implement a "full-subtractor" from "half-subtractor" blocks. (6 pts)

UCLA | ECEM16/CSM51A | Winter 2020

Prof. Xiang 'Anthony' Chen

(c) Implement a 3-bit "subtractor" from 1-bit "full-subtractor" blocks. (7 pts)

UCLA | ECEM16/CSM51A | Winter 2020

Prof. Xiang 'Anthony' Chen

(d) Processors use a block called an ALU (Arithmetic Logic Unit) as part of their processing capability. Here we will implement a very basic ALU with a total of 4 functions, selected by a 2-bit code. Using the building blocks discussed in lecture and the 3-bit subtractor block, implement a 3-bit ALU that can add, subtract, negate one argument, and multiply by 2. The select codes are listed in the table below. Note that there are 3 inputs (3-bit a, 3-bit b, and the 2-bit select code) and 2 outputs (3-bit result and a 1-bit carry). (14 pts)

Hint: Multiplying a number is like shifting the bits to the left and using 0 as the lowest bit. An

- oxampic. c	1 - 1 - 2 0001 - 2	2a = 2 = 4 b0010
elect Code	Result (3-bits)	Carry bit
00		

Select Code	Result (3-bits)	Carry bit
00	a + b	carry out
01	a - b	carry out
10	-a	Ó
11	2*a	Product MSB

Question #5 (Extra Credit - 5 pts)

Implement a 4-bit Gray code +1 incrementor using building blocks (no gates). The 4-bit Gray codes are shown below.

Decimal Number	Gray Code	Gray code as37
0	0000 Arbit	
1	1 0001 🕟	(a) 0001, a[1]
2	0 0011 2	
3	2 0010 ②	K C and at a
4	o 0110 😱	20103
5	011 <u>1</u>	610
6	0 0101	
7	3 0100	Dolli
8	o 1100	(1000
9	1101	0001
10	o 1111	161010
11	1110	> 61011
12	o 1010	201100
13	1011	381101
14	0 1001	101110
15	³ 1000	OITT