EE141 Principles of Feedback Control (Winter 2010) Solutions to Final

Problem 1

(1)

$$sX_1 = -0.4X_1 + 0.2X_2 + 0.02X_3 + U$$

$$sX_2 = 0.2X_1 - 0.4X_2$$

$$sX_3 = 0.2X_1 - 0.02X_3$$

Then we can eliminate X_2 , X_3 and get

$$\frac{X_1}{U} = \frac{(s+0.4)(s+0.02)}{s^3 + 0.82s^2 + 0.132s + 0.0008}$$

(2) With Routh Test,

s^3	1	0.132
<i>s</i> ²	0.82	0.0008
s^1	0.131	
s^0	0.0008	

The first column is positive. Thus the system is stable.

(3)

 $U = \frac{0.5}{s}$ and since the system is stable. The steady state concentration of insulin in the plasma upon an injection is

$$\lim_{s \to 0} sX_1(s)$$

=
$$\lim_{s \to 0} s \frac{(s+0.4)(s+0.02)}{s^3+0.82s^2+0.132s+0.0008} \frac{0.5}{s}$$

= 5

(4)

 G_3 has the fastest response due to two most negative poles. Thus G_3 is corresponding to the middle graph.

 G_1 has a relative larger steady state response than G_2 . Thus G_1 is corresponding to the left graph and G_2 corresponding to the right graph.

(5)

$$H(s) = \frac{1}{s^2 + 0.606s + 0.0036}$$

We can use a PD controller on the feedback path here, then the close-loop transfer function is

$$\frac{H}{1+DH} = \frac{\frac{1}{s^2 + 0.606s + 0.0036}}{1 + (k_D s + k_P)\frac{1}{s^2 + 0.606s + 0.0036}}$$
$$= \frac{1}{s^2 + (k_D + 0.606)s + k_P + 0.0036}$$

Since

$$t_s = \frac{4.6}{\sigma} \le 1 \Rightarrow \sigma \ge 4.6$$
$$t_r = \frac{1.8}{\omega_n} \le 0.9 \Rightarrow \omega_n \ge 2$$

we have

$$k_D + 0.606 = 2\sigma \ge 9.2, \quad k_p + 0.0036 = \omega_n^2 \ge 4$$

 $\Rightarrow k_D \ge 8.594, k_p \ge 3.9964$

We can pick $k_D = 9$, $k_P = 25$, such that $\omega_n > 2$, $\zeta < 1$, $\sigma > 4.6$. With Routh Test, the system with this PD controller is stable.

Problem 2 (1)

The root locus is

Departure angles at the poles are ± 180 Break-in point is -3Break-in angles are ± 90 (2)

To reduce the settling time, we need to make the real part of the poles as negative as possible. This requires the poles to be placed at the break-in point. Thus

$$1 + K \frac{10(s+1)}{s^2 + 2s + 5} = 0, s = -3$$

$$\Rightarrow K = 0.4$$

(3)

Since the root locus is not touching imaginary axis for any K > 0. Thus the bode plot will not touch *phase* = -180, and the gain margin here is infinity.

(4)

The Bode plot is

We can see that we cannot have phase = -180 and the gain margin is infinity.

(5)

$$G(s) = \frac{10(s+1)}{s^2 + 2s + 5} = \frac{2(s+1)}{(\frac{s}{\sqrt{5}})^2 + \frac{2}{5}s + 1}$$

The original DC gain is 2. To make the DC gain equal to 20dB = 10. We need a factor of 5. Also to make the magnitude plot decays at 40 dB/dec for all the frequencies greater than 100 rad/s, we need a pole around 10. Thus the compensator is

$$D(s) = \frac{5}{\frac{s}{10} + 1}$$

With Rooth test the system is stable.

(6)

After the compensator, the close-loop transfer function is

$$\frac{DG}{1+DG} = \frac{\frac{5}{10} + 1}{1 + \frac{5}{10} + 1} \frac{10(s+1)}{s^2 + 2s + 5}}{1 + \frac{5}{10} + 1} \frac{10(s+1)}{s^2 + 2s + 5}}{500(s+1)}$$
$$= \frac{500(s+1)}{(s+10)(s^2 + 2s + 5) + 500(s+1)}$$

With Rooth test the system is stable. Thus the steady state error of the unitary step input is

$$\lim_{s \to 0} sE(s) = \lim_{s \to 0} s(1 - \frac{500(s+1)}{(s+10)(s^2 + 2s + 5) + 500(s+1)})\frac{1}{s} = 0.091$$

Thus system cannot track the step input.