11.
$$
7.7 = -T+1
$$
 $\frac{113}{-11}$ $57.7 = -T+1$
\n $7(1+57.7) = 0$
\n $7.2 + 2 = 0.7 + 4$ $\frac{113}{-11} = 57.2 + 52 = 0.7$
\n
\n2. $5(1+57.2) = \frac{a}{1+57}$
\n $\therefore \frac{7}{11} = \frac{a}{5(1+57.1)(1+57.1)} = \frac{10}{5(1+0.15)(1+0.25)}$
\n
\n3. 2.6 = 0.2
\n
\n4. $e_{15} + a_{11}$ \therefore $\frac{(a_{19} \cdot 6_{11}}{1+6_{10} \cdot 6_{11}})$ \therefore $\frac{a_{11}}{1+6_{11} \cdot 6_{11}} = \frac{10}{1+6_{11} \cdot 6_{11} \cdot 6_{11}} = \frac{10}{1+6_{11} \cdot 6_{11}} = \frac{10}{1+6_{11$

b) checking stability:
\ncharacteristic polynomial:
\n0.025⁴ + 0.35 + 5 + 10K5 + 5 = 0
\nS⁴ + 155³ + 505 + 500K5 + 250 = 0
\nApplying
\n
\n*fourthis*
\n
$$
150
$$
 250
\n 15 500K
\n 15 500K
\n 15 500K
\n 15 250
\n $25[40K-60K+9]$
\n250
\n250

$$
\begin{array}{lll}\n\therefore & 500 K70 & \rightarrow & K70 \\
& 60 - \frac{\log X}{3} & \rightarrow & K43/2 \\
& 25 \left[\frac{\log X - 60K + 9}{2K - 3} \right] & \rightarrow & \cdots & 500 m\textcircled{2}: K43/2 \\
& & 2K - 340 \\
& & & \frac{\log X - 60K + 9}{2} & \geq 0 \\
& & & \frac{10}{4} \\
& & & & \frac{10}{4} & \frac{10}{
$$

 $\bar{\gamma}$

$$
0.1631
$$

32 \times 21.331

choose $K = 1$
: $C(s) = 1 + 0.5$
:

 $\mathcal{L}_{\rm{c}}$

Problem 2 (1)

$$
H(s) = \gamma(s)/U(s) = \frac{\frac{C}{1+CD}G}{1 + \frac{C}{1+CD}G} = \frac{CG}{1+CD+CG}
$$

(2)

When $D(s)=0$ and $C(s)=3000$, the open-loop transfer function is

$$
\frac{CG}{1+CD} = \frac{3000(s+1)}{(s^2+10s+100)(s+100)^2} = 3 \times 10^{-3} \frac{(s+1)}{((s/10)^2+s/10+1)(s/100+1)^2}
$$

The bode plot is:

(3)

When the gain at $\omega = 0.01$ rad/s is changed from -50 dB to 10 dB, the bode plot is shifted upwards by 60 dB. From the bode plot in part(2), we can see that in the phase plot the curve crosses -180° at approximately $\omega = 100$. The gain margin at $\omega = 100$ is less than 60 dB. Therefore, the system will not remain stable in this case.

Problem 3

(1)

$$
G(s) = \frac{s^3 + 4s^2 + s + 4}{s^3 + 4s^2 + s + 4 + k(s^2 + 4s + 3)}
$$

=
$$
\frac{1}{1 + k \frac{(s+1)(s+3)}{(s+4)(s^2+1)}}
$$

Set $1 + k \frac{(s+1)(s+3)}{(s+4)(s^2+1)}$ $\frac{(3+1)(3+3)}{(s+4)(s^2+1)} = 0$, the root locus is

The departure angle at the poles are

$$
\phi_{dep} = 45^{\circ} + \tan^{-1}(1/3) - (90^{\circ} + \tan^{-1}(1/4)) - 180^{\circ}
$$

= 45^{\circ} + 18.5^{\circ} - (90^{\circ} + 14^{\circ}) - 180^{\circ}
= -220.5^{\circ}

By symmetry, the departure angels at the other pole is 220.5° .

If applying Rule#6, we can find the break-in point by solving (not required in exam)

$$
a(s)\frac{db(s)}{ds} = b(s)\frac{da(s)}{ds}
$$

(s³ + 4s² + s + 4)(2s + 4) = (s² + 4s + 3)(3s² + 8s + 1)
s = -1.8

(2)

To reduce the settling time, we need to make the real part of the poles as negative as possible. This requires the poles to be placed at the break-in point. At this point the poles as purely real, hence there will be no overshoot.

(3)

From the plot of root locus, for $k > 0$, the poles are all at LHP, and the poles are on the real axis only when $k = 0$. For $k < 0$, there will be pole(s) in RHP. Thus ($k < 0$ not required in exam)

