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Midterm solutions

Problem 1. Suppose A is an m× p matrix with linearly independent columns and B is a p×n matrix
with linearly independent rows. We are not assuming that A or B are square. Define

X = AB, Y = B†A†

where A† and B† are the pseudo-inverses of A and B. Show the following properties.

1. Y X is symmetric.

2. XY is symmetric.

3. Y XY = Y .

4. XYX = X.

Carefully explain your answers.

Solution. We use the definitions and properties

A† = (ATA)−1AT , B† = BT (BBT )−1, A†A = I, BB† = I.

1. Follows from
Y X = (B†A†)(AB) = B†(A†A)B = B†B = BT (BBT )−1B.

2. Follows from
XY = (AB)(B†A†) = A(BB†)A† = AA† = A(ATA)−1AT .

3. In part 2 we have shown that XY = AA†. The result follows from

Y (XY ) = (B†A†)(AA†) = B†(A†A)A† = B†A† = Y.

4. Similarly,
(XY )X = (AA†)(AB) = A(A†A)B) = AB = X.



Problem 2.

1. Formulate the following problem as a set of linear equations. Find a point x ∈ Rn at equal
distance to n + 1 given points y1, y2, . . . , yn+1 ∈ Rn:

‖x− y1‖ = ‖x− y2‖ = · · · = ‖x− yn+1‖.

Write the equations in matrix form Ax = b.

2. Show that the solution x in part 1 is unique if the (n + 1)× (n + 1) matrix[
y1 y2 · · · yn+1

1 1 · · · 1

]
is nonsingular.

Solution.

1. Squaring the equations and canceling the terms xTx we obtain n linear equations

2(y2 − y1)
Tx = ‖y2‖2 − ‖y1‖2

2(y3 − y2)
Tx = ‖y3‖2 − ‖y2‖2

...

2(yn+1 − yn)Tx = ‖yn+1‖2 − ‖yn‖2.

In matrix form, Ax = b with

A =


(y2 − y1)

T

(y3 − y2)
T

...
(yn+1 − yn)T

 , b =
1

2


‖y2‖2 − ‖y1‖2
‖y3‖2 − ‖y2‖2

...
‖yn+1‖2 − ‖yn‖2

 .

2. We show that the matrix in part 1 is nonsingular. Suppose it is singular, so it has linearly
dependent rows. This means there exists a nonzero z with

[
y2 − y1 y3 − y2 · · · yn+1 − yn

]


z1
z2
...
zn

 = 0.

Then

[
y1 y2 · · · yn yn+1

1 1 · · · 1 1

]


−z1
z1 − z2

...
zn−1 − zn

zn

 = 0,

which contradicts the fact that the matrix on the left is nonsingular.
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Problem 3. We use the notation In for the identity matrix of size n×n and Jn for the reversal matrix
of size n× n. (The reversal matrix is the identity matrix with the column order reversed.)

1. Verify that the 2n× 2n reversal matrix J2n can be written as

J2n = Q

[
In 0
0 −In

]
QT where Q =

1√
2

[
In In
Jn −Jn

]
.

Also show that Q is orthogonal.

2. Let A be a 2n× 2n matrix with the property that

J2nA = AJ2n. (1)

An example is the 4× 4 matrix 
1 2 3 4
5 6 7 8
8 7 6 5
4 3 2 1

 .

Use the factorization of J2n in part 1 to show that if A satisfies (1) then the matrix QTAQ is
block-diagonal:

QTAQ =

[
B 0
0 C

]
,

where B and C are n× n matrices.

3. The complexity of solving a general linear equation Ax = b of size 2n×2n is (2/3)(2n)3 = (16/3)n3.
Suppose A has the property defined in part 2. By how much can the dominant term in the
complexity of solving Ax = b be reduced if we take advantage of the factorization property in
part 2? Explain your answer.

Solution.

1. The first statement follows from

Q

[
In 0
0 −In

]
QT =

1

2

[
In In
Jn −Jn

] [
In 0
0 −In

] [
In Jn
In −Jn

]
=

[
0 Jn
Jn 0

]
= J2n.

Q is orthogonal because it is square and

QTQ =
1

2

[
In Jn
In −Jn

] [
In In
Jn −Jn

]
=

[
In 0
0 In

]
.

2. Substituting the factorization of J2n we find that

Q

[
In 0
0 −In

]
QTA = AQ

[
In 0
0 −In

]
QT .

Multiplying on the left with QT and on the right with Q gives[
In 0
0 −In

]
QTAQ = QTAQ

[
In 0
0 −In

]
.
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If we partition QTAQ as

QTAQ =

[
B D
E C

]
,

then this means that[
B D
−E −C

]
=

[
In 0
0 −In

] [
B D
E C

]
=

[
B D
E C

] [
In 0
0 −In

]
=

[
B −D
E −C

]
.

Therefore D = −D = 0 and E = −E = 0.

3. The cost is reduced to 2×(2/3)n3 = (4/3)n3, i.e., by a factor of four. It is four times less expensive
to solve two equations of size n than one equation of size 2n.

The details are as follows. Partition A, x, and b as

A =

[
A11 A12

A21 A22

]
, x =

[
x1
x2

]
, b =

[
b1
b2

]
.

Note from part 2 that[
B 0
0 C

]
= QTAQ

=
1

2

[
In Jn
In −Jn

] [
A11 A12

A21 A22

] [
In In
Jn −Jn

]
=

1

2

[
A11 + A12Jn + JnA21 + JnA22Jn 0

0 A11 −A12Jn − JnA21 + JnA22Jn

]
.

Computing B and C costs 6n2 flops (n2 for A11 + JnA22Jn, n2 for A12Jn + JnA21, n
2 for the sum

of these two matrices, n2 for the difference, and 2n2 for the scalar multiplication with 1/2).

To solve Ax = b we use the factorization

A = Q

[
B 0
0 C

]
QT .

• Solve Qu = b. Since Q is orthogonal, the solution is

u =

[
u1
u2

]
= QT b =

1√
2

[
b1 + Jnb2
b1 − Jnb2

]
.

This requires 4n flops.

• Compute B and C (6n2 flops) and solve[
B 0
0 C

] [
y1
y2

]
=

[
u1
u2

]
.

This is equivalent to two independent linear equations By1 = u1 and Cy2 = u2. The
complexity is (4/3)n3.

• Solve QTx = y. Since Q is orthogonal, the solution is

x =

[
x1
x2

]
= Qy =

1√
2

[
y1 + y2

Jny1 − Jny2

]
.

This requires 4n flops.

The dominant term is (4/3)n3.
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Problem 4. Let A be an m × n matrix with linearly independent columns. Suppose Aij = 0 for
i > j + 1. In other words, the elements of A below the first subdiagonal are zero:

A =



A11 A12 · · · A1,n−1 A1n

A21 A22 · · · A2,n−1 A2n

0 A32 · · · A3,n−1 A3n

0 0 · · · A4,n−1 A4n

...
...

...
...

0 0 · · · An,n−1 Ann

0 0 · · · 0 An+1,n

0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0



.

Show that the Q-factor in the QR factorization of A has the same property: Qij = 0 for i > j + 1.

Solution. This follows from Q = AR−1 and the fact that R−1 is upper triangular. Therefore the kth
column of Q is a linear combination of the first k columns of A.
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Problem 5. Consider a square (n + m)× (n + m)-matrix[
A B
C D

]
with A of size n× n and D of size m×m. We assume A is nonsingular. The matrix

S = D − CA−1B

is called the Schur complement of A. Describe efficient algorithms for computing the Schur complement
of each of the following types of matrices A.

1. A is diagonal.

2. A is lower triangular.

3. A is a general square matrix.

In each subproblem, give the different steps in the algorithm and their complexity. Include in the total
flop count all terms that are order three (n3, n2m, nm2, m3) or higher. If you know different algorithms,
choose the most efficient one.

Solution. In all three problems, we first compute X = A−1B and then compute S = D − CX. The
complexity is 2m2n for the product CX and m2 for the subtraction. The complexity of computing
X = A−1B depends on the properties of A.

1. If A is diagonal we compute the elements of X = A−1B as Xij = Bij/Aii. This requires mn flops.

2. If A is lower triangular, we solve AX = B, column by column, via forward substitution. This
requires mn2 flops.

3. In the general case we compute an LU factorization of A ((2/3)n3 flops) and then solve AX = B
column by column (2mn2 flops).

Keeping only third order terms we obtain for the total complexity:

1. 2m2n.

2. 2m2n + mn2.

3. 2m2n + 2mn2 + (2/3)n3.
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