EE 131A Winter 2020 Midterm A
Probability Monday, February 3, 2020
Instructor: Lara Dolecek

Maximum score is 100 points. You have 110 minutes

to complete the exam. Please show your work.
Good luck!
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(a) Draw a Venn Diagram for the events A and B. Shade in the area corresponding
to the events (AN B) and (AU B)°. Clearly indicate which area belongs to which
event.

(b) Assume that we throw a single six-sided die. Let A be the event that the result

is even and let B be the event that the result is less than or equal to 3. What is
P(ANB) and P(AUB) ?
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2. (1@ Let A and B be two events. Given that P(B) > 0, prove

P(AU B‘|B) = P(AN B|B).

You may use any result taught in lecture or homework.
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3. (15 pts) True or False.

Circling the correct answer is worth +3 points, circling the incorrect answer
is worth —1 points. Not circling either is worth 0 points.

For a random variable X, VAR (aX) = aVAR(X) for all real values of a.
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P(A|B) = P(B|A) holds if and only if the events A and B are mutually exclusive.
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/ A discrete random variable has jump discontinuities in 1t%ﬁumulat1ve distribution
function.
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) If events X and Y are mutually exclusive, then they are also independent.

TRUE @

) For random variables X and Y, if E[XY] =
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4. (3+5F7 pts) Assume there are 5 jars numbered 1 to 5. The ith jar contains i black
balls, 6 — 7 red balls, and 5 green balls. A jar is selected uniformly at random and a
ball is selected from that jar. Let the events B, R, and G represent the events that a
black, red, or green ball is chosen, respectively. Let Aj represent the event that the
kth jar is chosen.

(a) What is P(B|A)? Write the answer in terms of .
(b) What is P(G), P(B), and P(R)?

(c) Given that the ball selected was black, what is the probability that the ball came
from the kth jar, i.e. P(Ax|B)? Write the answer in terms of k.

4) kw Jar,l b Hu‘t ‘)0“5, b-le rd b‘”“, § green balls (,) P(A “3)

= “ Jfo‘ﬂ, bA[/g “;‘;- P(?\/‘h‘) P(AL)
|k ,j PLs
P(B\Au\‘B \/ /; 2 :
.2

b) PG): P(GIA)- P +... +P(G) A )-P(A,)

PLRY: P(B)A, Y- P(AY+ . +PCB)ALY- P(A,)

L R R S ¢ G
’_\"+ -_— - T A m— ]
h§ TR A TR

K
* e (P ,3-‘2

P> PLRIAY - P(Y+... + PR 1A PLAS)
Lx 1,2
h h

‘u

-

~,— | )
| Vg*f'

7
[ "
== ‘ 3_
5SS g( ‘,;

N~

k G-

3



5. (IQ‘ES) We select two distinct numbers (a,b) in the range 1 to 99 (inclusive). How

many ways can we pick a and b such that their sum is even and a is a multiple of 97
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6. ptS) Let Xl,XQ,.

eters p; for even i and p, for odd ¢ where py # p; and n is a positive even number. Let
Y be the sum of all the Xj’s.

.., X, be independent Bernoulli random variables with param-

(a) Is Y a Binomial Random Variable? Justify your answer.
(b) Compute E[Y].
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7. (3+7+5 pts) Suppose that the continuous random variable X has pdf

fa) = {cx"’ o < 1,

0 otherwise.

(a) Find c such that the pdf is valid.
(b) Find E[X] and VAR(X).
(¢) Find P(X > 1).

2 f: Slt) ot - | P PLscxem) : p(5ex< )
> [ extax - - f\ 2y
%hﬂﬁw B =15t
N S i)
D / 53[0
ElX] - f EEACPr
: %I,l, el
311X
s = [1-1

T3
VAROX): %) - (§]x7)"
[, X' - p?
10,

8/
229 [VaR(x) - |

SRS

=




