Maximum score is 100 points. You have 110 minutes to complete the exam. Please show your work.

Good luck!

Your Name:

Your ID Number:

Name of person on your left:

Name of person on your right:

Problem	Score	Possible
1	10	10
2	13	15
3	15	15
4	15	15
5	15	15
6	15	15
7	15	15
Total	98	100

1. (5+5 pts)

- (a) Draw a Venn Diagram for the events A and B. Shade in the area corresponding to the events $(A \cap B)$ and $(A \cup B)^c$. Clearly indicate which area belongs to which event.
- (b) Assume that we throw a single six-sided die. Let A be the event that the result is even and let B be the event that the result is less than or equal to 3. What is $P(A \cap B)$ and $P(A \cup B)$?

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= \frac{3}{6} + \frac{3}{6} - \frac{1}{6}$$

$$= \frac{5}{6}$$

2. (15 pts) Let A and B be two events. Given that
$$P(B) > 0$$
, prove

$$P(A \cup B^c|B) = P(A \cap B|B).$$

You may use any result taught in lecture or homework.

$$P(A \cup B' \mid B) = \frac{P((A \cup B') \cap B)}{P(B)}$$

$$= \frac{P((A \cap B) \cup (B' \cap B))}{P(B)}$$

3. (15 pts) True or False.

Circling the correct answer is worth +3 points, circling the incorrect answer is worth -1 points. Not circling either is worth 0 points.

(a) For a random variable X, VAR(aX) = aVAR(X) for all real values of a.

TRUE

(b) P(A|B) = P(B|A) holds if and only if the events A and B are mutually exclusive.

TRUE

(c) A discrete random variable has jump discontinuities in its cumulative distribution function.

TRUE

FALSE

(d) If events X and Y are mutually exclusive, then they are also independent.

TRUE

For random variables X and Y, if E[XY] = E[X]E[Y], then X and Y are uncorrelated.

TRUE

FALSE

o) VAR(ax) = E[(ax)] - (E[ax])

$$= a^2 \mathbb{E}[X^2] - a^2 \mathbb{E}[X]^2$$

= a2 VARX)

- b) $\frac{P(A \cap B)}{P(B)} = \frac{P(A \cap B)}{P(A)}$
 - => P(B): P(A)

- 4. (3+5+7 pts) Assume there are 5 jars numbered 1 to 5. The *i*th jar contains *i* black balls, 6-i red balls, and 5 green balls. A jar is selected uniformly at random and a ball is selected from that jar. Let the events B, R, and G represent the events that a black, red, or green ball is chosen, respectively. Let A_k represent the event that the kth jar is chosen.
 - (a) What is $P(B|A_k)$? Write the answer in terms of k.
 - (b) What is P(G), P(B), and P(R)?
 - (c) Given that the ball selected was black, what is the probability that the ball came from the kth jar, i.e. $P(A_k|B)$? Write the answer in terms of k.

b)
$$P(G) = P(G|A_1) \cdot P(A_1) + ... + P(G|A_5) \cdot P(A_5)$$

 $= \frac{5}{11} \cdot \frac{1}{5} + \frac{5}{11} \cdot \frac{1}{5} + ... + \frac{5}{11} \cdot \frac{1}{5}$
 $= \frac{1}{11} \cdot 5 \Rightarrow P(G) = \frac{5}{11}$

$$P(B) : P(B|A,) \cdot P(A,) + \dots + P(B|A_e) \cdot P(A_s)$$

$$= \frac{1}{11} \cdot \frac{1}{5} + \frac{2}{11} \cdot \frac{1}{5} + \frac{3}{11} \cdot \frac{1}{5} + \frac{4}{11} \cdot \frac{5}{5} + \frac{5}{11} \cdot \frac{5}{5}$$

$$= \frac{15}{55} \Rightarrow P(B) : \frac{3}{11}$$

$$P(R) = P(R|A_1) \cdot P(A_1) + ... + P(R|A_5) \cdot P(A_5)$$

$$= \frac{5}{11} \cdot \frac{1}{5} + \frac{4}{11} \cdot \frac{1}{5} + \frac{2}{11} \cdot \frac{1}{5} + \frac{2}{11} \cdot \frac{1}{5} + \frac{1}{11} \cdot \frac{1}{5}$$

$$= \frac{15}{55} \Rightarrow P(R) = \frac{3}{11}$$

5. (15 pts) We select two distinct numbers (a, b) in the range 1 to 99 (inclusive). How many ways can we pick a and b such that their sum is even and a is a multiple of 9?

1~99 => 50 add #s and 49 even #s

Sa = { 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 49}

= 6 odd #s, 5 even #s

For sum to be even, no must consider two cases:

1 a is odd => p must also be odd

Out of 50 total odd numbers, a is odd, so there

are 49 remaining odd numbers that be can be. (because the #s must be distinct)

- => There are 49×6 mays to pick a and b if a is odd
- (2) a is even => b must also be even

Similarly, there are 48 remaining even numbers for b

=> There are 48x5 ways to pick a and b if a is even

In total, there are 294 + 240 = 6534 ways

6. (7+8 pts) Let X_1, X_2, \ldots, X_n be independent Bernoulli random variables with parameters p_1 for even i and p_2 for odd i where $p_2 \neq p_1$ and n is a positive even number. Let Y be the sum of all the X_i 's.

- (a) Is Y a Binomial Random Variable? Justify your answer.
- (b) Compute E[Y].
- a) No. While Binomial RVs can be written as sums of Bernoulli RVs, they take in two parameters: (n, p). This means that all of X1, X2,..., Xn must have the same probability for Y to be Binomial, but he know that p2 # p1, so this is not the case.

For even i, p=p,, so \(\mathbb{E}[X;] = p,

For odd i, p:p2, so E[Xi]= p2

Because n is even, there we $\frac{1}{2}$ Bernoulli RVs n/ parameter p, and $\frac{1}{2}$ with parameter p_2

$$= \left[n \cdot \frac{p_1 + p_2}{2} \right]$$

7. (3+7+5 pts) Suppose that the continuous random variable X has pdf

$$f(x) = \begin{cases} cx^2 & |x| \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find c such that the pdf is valid.
- (b) Find E[X] and VAR(X).
- (c) Find $P(X \ge \frac{1}{2})$.

a)
$$\int_{-\infty}^{\infty} f_{x}(t) dt : 1$$

$$\Rightarrow \int_{-1}^{1} cx^{2} dx : 1$$

$$\frac{c}{3} \left[x^{3} \right]_{-1}^{1} = 1$$

$$\frac{c}{3} \left[1 - (-1) \right] : 1$$

$$\Rightarrow \left[c : \frac{3}{2} \right]$$

$$E[x] = \int_{-\infty}^{\infty} cx^{2} dx = 1$$

b)
$$E[X] = \int_{-\infty}^{\infty} x f_{x}(t) dt$$

 $= \frac{3}{2} \int_{-1}^{1} x^{3} dx$
 $= \frac{3}{2} \cdot \frac{1}{4} [x^{4}]^{\frac{1}{4}}$
 $= \frac{3}{8} [1-1]$

$$VAR(X) = \mathbb{E}[X^{2}] - (\mathbb{E}[X])^{2}$$

$$= \frac{3}{2} \int_{-1}^{1} x^{4} dx - 0^{2}$$

$$= \frac{3}{2} \cdot \frac{1}{5} (x^{5}) \Big|_{-1}^{1}$$

$$= \frac{3}{10} \cdot 2 \Rightarrow VAR(X) = \frac{3}{5}$$

c)
$$P(X^{\frac{1}{2}} = P(\frac{1}{2} \le X \le 0) = P(\frac{1}{2} \le X \le 1)$$

$$= \int_{\frac{1}{2}}^{1} \frac{3}{2} x^{2} dx$$

$$= \frac{3}{2} \cdot \frac{1}{3} \left[x^{3} \right]_{\frac{1}{2}}^{1}$$

$$= \frac{1}{2} \left(1 - \frac{1}{8} \right)$$

$$= \frac{1}{2} \cdot \frac{2}{8} = \frac{2}{16}$$