EE 131A Probability

Instructor: Lara Dolecek

Fall 2011 Midterm A Wednesday, October 26, 2011

Maximum score is 100 points. You have 110 minutes to complete the exam. Please show your work.

Good luck!

Your Name:

Your ID Number:

Name of person on your left:

Name of person on your right:

Problem	Score	Possible
1	,	5
2		10
3		15
4		10
-5		15
6		10
7		20
8		15
Total		100

1. (5 pts) Express the probability of the event "neither A nor B" occurs in terms of P(A), P(B) and $P(A \cap B)$.

event "neither A non B" is
$$A^{C} \wedge B^{C}$$
. thus
$$P(A^{C} \wedge B^{C}) = 1 - P(A \cup B) = 1 - [P(A) + P(B) - P(A \cap B)]$$

$$= 1 - P(A) - P(B) + P(A \wedge B)$$

2. (10 pts) Consider a 12-sided unfair die, with sides numbered by integers 1 through 12. Suppose the even numbered sides are twice as likely as odd numbered sides.

Let $A = \{ \text{ odd numbered side } \} \text{ and } B = \{4, 5, 6, 7, 8\}.$

- (a) Compute P(A).
- (b) Compute $P(A \cap B)$.

(a)
$$p_1 = p_3 = p_5 = \dots = p_{11} = \frac{1}{6 \times 2 + 6 \times 1} = \frac{1}{18}$$

$$p_2 = p_4 = p_6 = \dots = p_{12} = \frac{2}{6 \times 2 + 6 \times 1} = \frac{1}{9}$$

$$p(A) = \frac{1}{18} \times 6 = \frac{1}{3}$$

$$p(A) = \begin{cases} 5.7 \end{cases}$$

$$p(A \land B) = \begin{cases} 5.7 \end{cases}$$

Middern B:

(a)
$$P(A) = \frac{1}{15} \times 5 = \frac{1}{3}$$

(b) $P(A \cap B) = \frac{1}{15} \times 2 = \frac{2}{15}$

3. (15 pts) Find the probability that in the class of 36 students, exactly 3 students have a birthday each month.

multinomial
$$P = \frac{36!}{3!3! \cdots 3!} \left(\frac{1}{12}\right)^{3} \left(\frac{1}{12}\right)^{3} \cdots \left(\frac{1}{12}\right)^{3}$$

$$= \frac{36!}{6^{2} \cdot 12^{36}}$$
or
$$P = \frac{\binom{36}{3}\binom{33}{3}\binom{30}{3} \cdots \binom{6}{3}\binom{3}{3}}{\binom{3}{3}\binom{30}{3}} \cdots \binom{6}{3}\binom{3}{3}}{\binom{3}{3}\binom{3}{3}}$$

$$= \frac{36!}{6^{2} \cdot 12^{36}}$$

Midtern B:

4. (10 pts) A biased coin is tossed n = 10 times, with P(head) = p. Let Y be a random variable denoting the differences between the number of heads and the number of tails. Find the PMF of Y.

Denote number of heads as
$$X$$
 then

 $Y = X - (N - X) = 2X - 10$
 $P(X = k) = {0 \choose k} P^{k} (1 - p)^{10 - k}$

For $Y = M = -10, -8, -6, \cdots 6, 8, 10$
 $P(Y = M) = P(2X - 10 = M) = P(X = \frac{10 + M}{2})$
 $= {0 \choose 2} P^{\frac{10 + M}{2}} P^{\frac{10 - M}{2}}$

Midtern B.

$$P(Y=m) = \left(\frac{10}{2}\right) P \frac{10+m}{2} \left(1-p\right) \frac{10+m}{2}$$

5. (15 pts) True or False.

Circling the correct answer is worth +3 points, circling the incorrect answer is worth -1 points. Not circling either is worth 0 points.

(a) E[X + Y] = E[X] + E[Y] when X and Y are independent.

TRUE FALSE

- (b) $P(A \cup B \cup C) \le P(A) + P(B) + P(C)$ **FALSE**
- (c) Geometric RV is a sum of independent Bernoulli RVs, each with success probability p.

TRUE

(d) If X is Bernoulli with success probability 0.5, and Y = X + 100 then VAR(Y) =25.

FALSE) TRUE

(e) For $0 < x < +\infty$, Q(x) + Q(-x/2) = 1

FALSE TRUE

Exo Midserm B.

(b) FALSE

(d) FALSE

1e) TRUE

6. (10 pts) Suppose $X \sim \mathcal{N}(-1,2)$. Compute $P(-2 < X \le 2)$ in terms of Q-function.

$$X \sim N(-1,2)$$
 then $\frac{X-1-1}{\sqrt{2}} \sim N(0,1)$.
 $P(-2 < X \leq 2) = P(X \leq 2) - P(X \leq -2)$
 $= 1 - Q(\frac{2+1}{\sqrt{2}}) - 1 + Q(\frac{-2+1}{\sqrt{2}})$
 $= Q(-\frac{1}{\sqrt{2}}) - Q(\frac{3}{\sqrt{2}})$

Midterm B:
$$X \sim N(-2.1)$$
 then $X+2 \sim N(0.1)$
 $P(-2 < X \le 2) = P(X \le 2) - P(X \le -2)$
 $= 1 - O(\frac{2+2}{1}) - 1 + O(\frac{-2+2}{1})$
 $= Q(0) - Q(4)$

- 7. (5+5+5+5) pts) Suppose X is a continuous random variable uniformly distributed on the interval [-1, +1].
 - (a) Compute E[X] and $E[X^2]$.
 - (b) Suppose Y = 3X + 2. Sketch the CDF and PDF of Y.
 - (c) Compute VAR(Y).
 - (d) Suppose Z is -1 if $X \le 0$ and is +1 if X > 0. Sketch the CDF of Z.

(a)
$$E[x] = \frac{-1+1}{2} = 0$$

 $E[x^2] = E[x] + VAR[x] = VAR[x] = \frac{(1+1)^2}{12} = \frac{1}{3}$
(b) $X \sim U[-1,+1] \quad Y = 3X + 2$ is still uniform

then $Y \sim U[-1,5]$
 $COF \circ f Y$
 $f \circ f Y \circ$

Midtern B.
(b) Y ~ U[-2,4]

- 8. (10+5 pts) Suppose X is a Gaussian random variable with mean m and variance σ^2 .
 - (a) Compute the pdf of Y = |X|.
 - (b) Is Y a continuous RV? Why or why not?

(a)
$$f_{Y}(y) = f_{Y}(y) = f_{Y}(y) = f_{Y}(y)$$
 for $y \ge 0$
 $= f_{Y}(y) = f_{Y}(y) = f_{Y}(y) - f_{Y}(y) = f_{X}(y) - f_{X}(y)$
 $= \frac{1}{\sqrt{2\pi}} \frac{1}$

(b) Yis a continuous RV.

because pdf of Y does not have delta function, which leads discontinuous in cdf.

Cdf of Y should be continuous, therefore
Y is a continuous R.V.