EE 131A Fall 2011 Midterm A
Probability Wednesday, October 26, 2011
Instructor: Lara Dolecek

Maximum score is 100 points. You have 110 minutes

to complete the exam. Please show your work.
Good luck!
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1. (5 pts) Express the probability of the event “neither A nor B” occurs in terms of P (A),
P(B) and P(AN B).

evot poither A pen BT 3 ACARE thus
PANBT =1 PR = 1= (PP piga)
=17 P P Pefnp)



2. (10 pts) Consider a 12-sided unfair die, with sides numbered by integers 1 through 12
Suppose the even numbered sides are twice as likely as odd numbered sides.

Let A = { odd numbered side } and B = {4,5,6,7,8}.

(a) Compute P(A).
(b) Compute P(AN B).
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3. (15 pts) Find the probability that in the class of 36 students, exactly 3 students have
a birthday each month.




4. (10 pts) A biased coin is tossed n = 10 times, with P(head) = p. Let Y be a random
variable denoting the differences between the number of heads and the number of tails.

Find the PMF of Y.
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5. (15 pts) True or False.

Circling the correct answer is worth +3 points, circling the incorrect answer
is worth —1 points. Not circling either is worth O points.

(a) E[X +Y] = E[X]+ E[Y] when X and Y are independent.

FALSE

(b) P(AUBUC) < P(A) + P(B) + P(C)
@ FALSE

(c) Geometric RV is a sum of independent Bernoulli RVs, each with success proba-
bility p.

TRUE FALSE

(d) If X is Bernoulli with success probability 0.5, and ¥ = X 4 100 then VAR(Y") =
25.

TRUE FALSE

(e) For 0 < z < 400, Q(z) + Q(—z/2) =1

TRUE FALSE
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6. (10 pts) Suppose X ~ N (-1,2). Compute P(—-2 < X < 2) in terms of Q-function.
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7. (5+ 5+5+5 pts) Suppose X is a continuous random variable uniformly distributed on
the interval [—1, +1].

(a) Compute E[X] and E[X?].

(b) Suppose Y = 3X + 2. Sketch the CDF and PDF of Y.

(c) Compute VAR(Y').

(d) Suppose Z is —1 if X <0 and is +1 if X > 0. Sketch the CDF of Z.
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8. (1045 pts) Suppose X is a Gaussian random variable with mean m and variance o2,

(a) Compute the pdf of Y = |.X|.
(b) Is Y a continuous RV ? Why or why not 7
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