ECE M116C- CS M151B Computer Architecture Systems - UCLA

Quiz 2
Fall 2021

(upload it to Gradescope)

Don’t forget to sign in when you are leaving.

Q1. Assume that we have the following sequence of instructions in our RISCV pipelined

processor:

begin:
addi x1,
ori x2,
andi x3,
sub x4,
1w x5,
add x5,
beq x5,

end:

x0, 15
x0, 2
x1l, 3
x1, x0
4 (x0)
x5, x3
x4, end

mul x0,x0,x0

Answer the following questions:
a. If our processor has no forwarding and/or branch prediction (i.e., branches are
resolved at MEM stage, and we should stall the processor until it is resolved), fill

the following table. Write (f,d, e, m,w) for each column. If the processor has

assume that this should be taken

been stalled, show it by " - " (first two instructions are filled already).
1(2(3|4|5|6|7(8|9]10|11|12]|13|14|15]|16|17|18|19]20

addi |f [d |e |m |w

ot fldle |m|w

andi

sub

lw

add

beq

mul

ECE M116C- CS M151B Computer Architecture Systems - UCLA

b. Now assume that we have forwarding and the branch outcome can be known at
DECODE stage. Fill the following table: (you still have to stall for branches!)
If there is a forwarding, show it with * (for BOTH the forwarding stage and EX)

1 (2|34 |5|6|7[8]|9]|10|11(12]|13|14[15]|16(17[18]19

20

addi [£ |d |e |m |w

ori fldl]le |m|w

andi

sub

Iw

add

beq

mul

c. What is the speed up in case b (compared to a)?

Q2. Assume our program has this mix of instructions (there is no RAW or load-use data
hazard):

R/I-type = BEQ JAL LW/SW

60% 20% 5% 15%

a. What is the IPC if we have a branch predictor that does always-not-taken with
30% accuracy but with no BTB? (assume that the branch resolves at DECODE
stage).

b. If we change the branch predictor to a 2-bit branch history table (BHT) with 80%
accuracy and add a (perfect) BTB, what would be the new IPC?

c. What is the speed up for case b?

ECE M116C- CS M151B Computer Architecture Systems - UCLA

Q3- State True (T) or False (F) for each statement. Show your work/explain for each
statement.

a. BTB is useful for finding the destination address in RET and CALL instructions.
b. Ideally, an N-Issue superscalar processor can improve the speed up by a factor of

N

c. For a 2-bit predictor with initial state 00 (Not Taken), the NT, T, T, NT, T,

T, T, NT, NT, NT branch pattern,the predictor has 80% accuracy.

d. Processor A which has a branch predictor that has 95% accuracy with 2 cycles
miss penalty has a higher (average) IPC than Processor B which has a branch
predictor with 80% accuracy with 1 cycle miss penalty.

Appendix:

You can use the following information to answer the questions. You are NOT allowed to use

any other resources (e.g., Google, notes, lectures, Campuswire, etc.). Using Calculator is

OK.

a8

B

|

Address

Instruction
memory

IF/ID

/
/

ID/EX

| \
| Control f—» P
\ |

RegWrite

Read

Read

register 1 datat

l Instruction

Read

register 2
Register:

Write

register

sRear.{
data 2

—p=| Write
data

Instruction
[31-0]

Instruction

3% Imm | 64
Gen
[30, 14-12]

Instruction
[11-7]

Branch
\

MemWirite

UEM:’WB

MemtoReg

Write
data

Address

Data
memory

Read | |
data

I

‘ MemRead

ECE M116C- CS M151B Computer Architecture Systems - UCLA

Instruction
memory

L3 |

{ Haard ID/EX.MemRead
— detection |«)
f— unit
= ID/EX
T
—= W
EX/MEM
\ M | !
Control ul—4—=m . wae MEMMWE
X
|F£|D‘ - l ol EX ‘—» M e W |
N
M
u
g x
b= Registe
S egistars \‘:I)-u. ird A il
g — ALU -
B E Data
mem
X ory
S
'y
IF/ID.RegisterRs1
IF/ID.RegisterRs2
IE/1D_RegisterRd Rd _
Rs1 - Forwarding " |
unit y

ADDI addi rd, rs1, constant Add Immediate reglrd] <= reg[rs1] + constant
SLTI slti rd, rsl1, constant Compare < Immediate (Signed) reglrd] <= (reg[rs1] <, constant) 2 1 : @
SLTIU sltiu rd, rs1, constant Compare < Immediate (Unsigned) reglrd] <= (reg[rs1] <, constant) ? 1 : @
XORI xori rd, rsl1, constant Xor Immediate reglrd] <= reg[rs1] " constant
ORI ori rd, rsl, constant Or Immediate reglrd] <= reglrs1] | constant
ANDI andi rd, rs1, constant And Immediate reglrd] <= reglrs1] & constant
SLLI slli rd, rs1, constant Shift Left Logical Immediate reglrd] <= reg[rs1] « constant
SRLI srli rd, rs1, constant Shift Right Logical Immediate reglrd] <= reg[rs1] », constant
SRAI srai rd, rs1, constant Shift Right Arithmetic Immediate reglrd] <= reg[rs1] »; constant
ADD add rd, rsl1, rs2 Add reglrd] <= reglrs1] + reglrs2]
SUB sub rd, rsi1, rs2 Subtract reglrd] <= reglrs1] - reglrs2]
SLL sll rd, rsi1, rs2 Shift Left Logical reglrd] <= reglrs1] « reglrs2]
SLT slt rd, rsi1, rs2 Compare < (Signed) reglrd] <= (reglrs1] <s reg[rs2]) 2 1 : @
SLTU sltu rd, rsi1, rs2 Compare < (Unsigned) reglrd] <= (reglrs1] <, reglrs2]) 2?1 : @
XOR xor rd, rsl1, rs2 Xor reglrd] <= reglrs1] " reglrs2]
SRL srl rd, rsl1, rs2 Shift Right Logical reglrd] <= reglrs1] », reglrs2]
SRA sra rd, rsl1, rs2 Shift Right Arithmetic reglrd] <= reg[rs1] »s; reglrs2]
OR or rd, rsl, rs2 Or reglrd] <= reglrs1] | reg[rs2]
AND and rd, rsl1, rs2 And reglrd] <= reglrs1] & reg[rs2]
Loads Load Byte| I (LB rd,rsl,imm rd MLCrs1+imm][@:7]
Load Halfword| I |[LH rd,rsl,imm rd = M[rs1+imm][@:15]
Load Word| I [LW rd,rsl,imm rd = MCrs1+imm][@:31]
Load Byte Unsigned| I |LBU rd,rsl,imm rd = MCrs1+imm][@:7] zero-extends
Load Half Unsigned| I |LHU rd,rsl,imm rd = MCrs1+imm][@:15] zero-extends
Stores StoreByte| S [SB rsl,rs2,imm MLrs1+imm][@:7] = rs2[©:7]
Store Halfword| S |SH rsl,rs2,imm MCrs1+imm][@:15] = rs2[@:15]
Store Word| S |sW rsl,rs2,imm MLCrs1+imm][©:31] = rs2[©:31]

ECE M116C- CS M151B Computer Architecture Systems - UCLA

JAL jal rd, label Tump and Link reglrd] <= pc + 4
pc <= label
JALR jalr rd, offset(rsl) Jump and Link Register reglrd] <= pc + 4
pc <= {(reglrs1] + offset)[31:1], 1'b0}
BEQ beq rs1, rs2, label Branch if = pc <= (reglrs1] == reg[rs2]) 7 label
:pc+ 4
BNE bne rs1, rs2, label Branch if # pc <= (reglrs1] != reg[rs2]) ? label
:pc+ 4
BLT blt rs1, rs2, label Branch if < (Signed) pc <= (reglrs1] <s reglrs2]) ? label
:pc + 4
BGE bge rs1, rs2, label Branch if > (Signed) pc <= (reglrs1] >=; reglrs2]) ? label
: pc + 4
BLTU bltu rsi1, rs2, label Branch if < (Unsigned) pc <= (reglrs1] <, reglrs2]) 7 label
s pc+ 4
BGEU bgeu rs1, rs2, label Branch if > (Unsigned) pc <= (reglrs1] »=, reglrs2]) 7 label
:pc + 4

