

University of California, Los Angeles Henry Samueli School of Engineering and Applied Science Department of Electrical Engineering

D. Marković Mon, May 2, 8:00 – 9:50 am

EE115C: SPRING 2011—MIDTERM

Please write answers in the box provided.

Answers elsewhere will not be graded.

You have 110 minutes.

The test is planned so that you roughly spend 2 minutes per point + 10 minutes to check your answers. Budget your time properly. If you get stuck, move on…

Good luck!

- **Problem 1 _____/10**
- **Problem 2 _____/10**
- **Problem 3 _____/20**
- **Problem 4 _____/10**

PROBLEM 1: MOS Transistor – Regions of Operation (10 pts)

Determine the region of operation for devices (a) and (b) for the V_X values listed in the tables below. If you find that a device is on the boundary of two regions, write both regions in the table. For example, for a device on the boundary of linear and saturation region write (linear/saturation). Assume $V_{SB} = 0$ for both devices (no body bias).

0.5V
\n0.9V
\n
$$
0.5V
$$

\n0.9V
\n $0.5V$
\n $0.5V$
\n $0.5V$
\n $0.5V$
\n $0.4V$
\n $0.9V$
\n $0.9V$
\n $0.9V$
\n V_X

Parameters: $V_{TN} = 0.17V$, $V_{TP} = -0.2V$ $\mathcal{E}_{CN} = 3V/\mu m, |\mathcal{E}_{CP}| = 4V/\mu m$ For both transistors: $L_d = 110$ nm, $x_d = 15$ nm

Device (a) (5 pts)

 $|V_{DSATP}| = |\mathcal{E}CP| \times \text{Left P} = 0.32V.$ $|V_{GT}| = |V_{GS}| - |V_{TP}| = |V_{GS}| - 0.2 \le 0$: cutoff $V_{min} = min (|V_{GT}|, |V_{DS}|, |V_{DSATP}|)$

- $V_{min} = |V_{GT}|$: saturation
- $V_{min} = |V_{DS}|$: linear
- $V_{min} = |V_{DSATP}|$: vel-saturation

Device (b) (5 pts)

 $V_{DSATN} = \frac{\text{CNN}}{\text{C}} = 0.24V$. $V_{GT} = V_{GS} - V_{TN} = V_{GS} - 0.17 \leq 0$: cutoff $V_{min} = min (V_{GT}, V_{DS}, V_{DSATN})$

- \bullet V_{min} = V_{GT}: saturation
- $V_{min} = V_{DS}$: linear
- V_{min} = V_{DSATN}: vel-saturation

PROBLEM 2: VTC (10 pts)

Consider the circuit below, with the input at the gate of the NMOS transistor M_1 . M_2 is also an NMOS transistor, but its gate voltage is fixed at 0.4V.

$$
V_{in} \begin{array}{c}\n\text{V}_{DD} \\
\hline\nW/L_{eff} = 4 \\
\hline\nV_{out} \\
\hline\n0.4V \begin{array}{c}\n\end{array} & \text{V}_{DD} = 1V, \\
V_{out} \\
\hline\nk_n^2 = 130 \mu A/V^2, \gamma = 0, \lambda = 0. \\
\hline\n\end{array}
$$

(a) Calculate V_{out} for $V_{\text{in}} = V_{\text{DD}}$. **(3 pts)**

Since M_1 is diode-connected, assume M_1 is in velocity saturation (v-sat). Since M_2 has very low V_{GS} , assume M_2 is in saturation.

From
$$
I_{M1} = I_{M2}
$$
,
\n
$$
130 \times 4 \times \left((V_{in} - V_{out} - 0.17) \times 0.3 - \frac{0.3^2}{2} \right) = 130 \times 2 \times \frac{(0.4 - 0.17)^2}{2}
$$
\n
$$
V_{out} = 0.64V
$$

Check: based on V_{out} , we confirm that M_1 is v-sat and that M_2 is sat.

 $V_{\text{out}} = 0.64 \text{ V}$

(b) Calculate V_{out} for $V_{\text{in}} = 0.7V$. **(3 pts)**

Assume M_1 is in v-sat (could be v-sat or sat, but $V_G = 0.7V$ is quite high, so assume v-sat) Assume M_2 is in saturation for the same reason as in (a).

From
$$
I_{M1} = I_{M2}
$$
,
\n
$$
130 \times 4 \times \left((V_{in} - V_{out} - 0.17) \times 0.3 - \frac{0.3^2}{2} \right) = 130 \times 2 \times \frac{(0.4 - 0.17)^2}{2}
$$
\n
$$
V_{out} = 0.34V
$$

Check: based on V_{out} , we confirm that the assumptions are valid.

 $V_{\text{out}} = 0.32V$

(c) Sketch the VTC for this circuit. **(4 pts)**

As long as M_1 is in v-sat and M_2 is in saturation like in parts (a) and (b), we have a level-shifter: $V_{out} = V_{in} - 0.36V$

When V_{in} is reduced such that M_2 enters linear region (V_{out} < 0.4 – 0.17 = 0.23V), current equation has V_{out}^2 term. Below $V_{in} = 0.23V + 0.36V = 0.59V$, the circuit is a non-linear level shifter down to $V_{in} = 0.17V$ below which $V_{out} = 0$.

PROBLEM 3: Delay and Power (20 pts)

Consider the following circuit, with NAND, NOR gates and two NMOS transistors.

(a) What logic function is implemented by this circuit (inputs: A, B, C, D, E; output: F)? **(4 pts)**

 $F = E \cdot X + Ebar \cdot Y$ $X = NAND(A,B)$ $Y = NOR(C,D)$

$$
\mathbf{F} = \boldsymbol{E} \cdot \overline{\boldsymbol{A} \cdot \boldsymbol{B}} + \overline{\boldsymbol{E}} \cdot \overline{\boldsymbol{C} + \boldsymbol{D}}
$$

(b) Assume the NAND and NOR gates are static CMOS gates with device sizes such that NMOS transistors all have R_{on} = 10 kΩ and PMOS transistors all have R_{on} = 12 kΩ. Capacitance: $C_X = C_Y = 0$, $C_F = 40$ fF, any other capacitance not explicitly drawn is neglected (including capacitance at NAND and NOR gate internal nodes). Suppose now we have input transition from $(A, B, C, D, E) = (0, 1, 1, 0, 1)$ to $(A, B, C, D, E) = (0, 1, 1, 0, 0)$. Assuming ideal step transition at input E, calculate t_{pHL} for this transition at output F. **(6 pts)**

The discharging path goes through \bar{E} -controlled and C-controlled NMOS transistors. So the pull-down resistance is:

$$
R_{dn} = R_{on} + R_{on} = 20k\Omega
$$

Since $C_Y = 0$, the pull-down delay t_{pHL} is given by: $t_{pHL} = 0.69 R_{dn} C_F = 0.69 \times 20 k\Omega \times 40 \text{fF} = 552 \text{ps}$

 t_{pHL} = 552ps

(c) Assume $C_X = C_Y = 10$ fF, $C_F = 40$ fF, any other capacitance not explicitly drawn is neglected (including capacitance at NAND and NOR gate internal nodes). Assume the probability of logic 1 for inputs: $p(A = 1) = 0.5$, $p(B = 1) = 0.4$, $p(C = 1) = 0.2$, $p(D = 1) = 0.3$, $p(E = 1) = 0.6$. $f_{c1k} = 100 \text{ MHz}$, $V_{DD} = 1 \text{ V}$, threshold voltage $V_{TN} = 0.2 \text{ V}$, $V_{TP} = -0.2 \text{ V}$. Calculate the average switching power P_{sw} of the circuit (logic inputs A-E have 0 to V_{DD} swing and gates are powered from V_{DD}). **(10 pts)**

We can calculate switching probabilities of nodes X and Y in order to calculate power due to switching of C_X and C_Y .

 $p(X = 0) = p(A = 1)p(B = 1) = 0.5 * 0.4 = 0.2$ $p(X = 1) = 1 - 0.2 = 0.8$ $\alpha_{X:0\rightarrow 1} = 0.2 \times 0.8 = 0.16$

 $p(Y = 1) = p(C = 0)p(D = 0) = 0.8 * 0.7 = 0.56$ $p(Y = 0) = 1 - 0.56 = 0.44$ $\alpha_{Y:0\rightarrow 1} = 0.44 \times 0.56 = 0.2464$

 $P_{swX} = \alpha_{X:0 \to 1} \times f_{clk} \times C_X \times V_{DD}^2 = 0.16 \times 100 MHz \times 10 fF \times (1V)^2$ $P_{SWY} = \alpha_{Y:0 \to 1} \times f_{clk} \times C_Y \times V_{DD}^2 = 0.2464 \times 100 MHz \times 10 fF \times (1V)^2$

Now we calculate switching probability of the output node F and the corresponding power.

 $p(F = 1) = p(X = 1)p(E = 1) + p(Y = 1)p(E = 0) = 0.8 * 0.6 + 0.56 * 0.4 = 0.704$ $p(F = 0) = 1 - 0.704 = 0.296$ $\alpha_{F:0\rightarrow 1} = 0.296 \times 0.704 = 0.208$

$$
P_{sw,F} = \alpha_{F:0 \to 1} \times f_{clk} \times C_F \times V_{DD} \times (V_{DD} - V_{TN})
$$

= 0.208 × 100MHz × 40fF × 1V × (1V – 0.2V) = 0.6656µW

PROBLEM 4: Gate Sizing of a Multi-Stage Network (10 pts)

Consider such a multi-stage logic shown above. The numbers represent relative input gate capacitance. For example, the inverter with "1" has input capacitance of C_{in} , the inverter with "21" has input capacitance of $21C_{in}$ because it is 21 times as wide. Output is loaded with 60 C_{in} .

(a) Find the minimum delay from input to output using logical effort. **(4 pts)**

We calculate stage effort *f** that minimizes delay:

- $G = g_{NAND} \times g_{NOR} = \frac{4}{3}$ $\frac{4}{3} \times \frac{5}{3}$ $\frac{5}{3} = \frac{2}{9}$ $\frac{20}{9}$, $H = \frac{2}{9}$ $\frac{1}{1}$ =
- $F = GH = 180$, therefore optimal stage effort is $f^* = \sqrt[3]{1}$

Since all stages have equal stage effort at minimum delay, $D_{min} = 3f^* + P = 16.95 + 5$

 $D_{\min} = 21.95$

(b) Find the size of the NAND and NOR gates x and y (NAND has input capacitance xC_{in} and NOR has input capacitance yC_{in}) that minimize the delay from input to output. **(6 pts)**

Now start from the output and work backwards to calculate size of the gates:

 $y=\frac{5}{3}$ $\frac{5}{3} \times \frac{8}{5.0}$ $\frac{81}{5.65}$ = 23.9, $x = \frac{4}{3}$ $\frac{4}{3} \times \frac{2}{5}$ $\frac{23.5}{5,65}$ =

