

University of California, Los Angeles Henry Samueli School of Engineering and Applied Science Department of Electrical and Computer Engineering

D. Marković

Thu, April 28

EE115C: SPRING 2022—MIDTERM

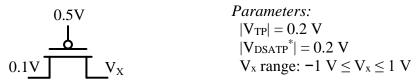
NAME	Last First		
SID			

Please write answers in the boxes provided.

Answers elsewhere will not be graded.

You have 110 minutes.

The test is planned so that you roughly spend 2 minutes per point + 10 minutes to check your answers. Budget your time properly. If you get stuck, move on...


Good luck!

- Problem 1 ____/10
- Problem 2 ____/10
- Problem 3 ____/15
- Problem 4 ____/15

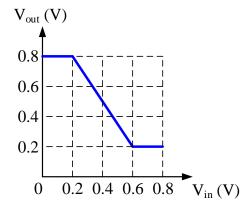
Total (50)

Problem 1: MOS Transistor – Regions of Operation (10 pts)

Determine the range of V_x for different regions of operation, as indicated in the table below. If a region of operation is not possible, mark the case with DNE (does not exist).

Solution:

 V_X is <u>source</u> when $V_X > 0.1V$ V_X is <u>drain</u> when $V_X < 0.1V$


Source:	PMOS is cutoff until $V_X > 0.7V$ (enters "saturation")
$V_X > 0.1V$	@ $V_X = 0.9V$, PMOS enters V-Sat

<u>Drain:</u>	PMOS is cutoff
$V_X < 0.1V$	

In both of the above scenarios, linear regime DNE when PMOS is on

Cutoff	Linear	"Saturation"	V-Sat
$-1V \leq V_X \leq 0.7V$	DNE	$0.7V \leq V_X \leq 0.9V$	$0.9V \le V_X \le 1V$

Problem 2: VTC (10 pts)

- (a) Calculate V_{OL} and V_{OH} from the VTC. (2 pts)
 - $V_{OL} = f (V_{OH}), V_{OH} = f(V_{OL})$ $\rightarrow V_{OL} = 0.2V$ $\rightarrow V_{OH} = 0.8V$
- (b) Calculate V_{IL} and V_{IH} from the VTC. (2 pts) Intersect points with gain = -1
 - $\Rightarrow V_{IL} = 0.2V$ $\Rightarrow V_{IH} = 0.6V$
- (c) Calculate noise margins, NM_L and NM_H. (2 pts)

$$\begin{split} NM_L &= V_{IL} - V_{OL} = 0V \\ NM_H &= V_{OH} - V_{IH} = 0.2V \end{split}$$

(d) Estimate the gain in the mid-region of the VTC. (2 pts)

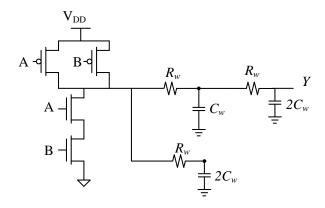
From the VTC geometry gain = -1.5

(e) Calculate $E_{0 \rightarrow 1}$ if the circuit drives $C_L = 5 fF$ at the output. Assume $V_{DD} = 1V$. (2 pts)

$$E_{0 \rightarrow 1} = C_L \cdot V_{DD} \cdot (V_{OH} - V_{OL}) = 3fJ$$

$$V_{OL} = 0.2V$$

$$V_{OH} = 0.8V$$

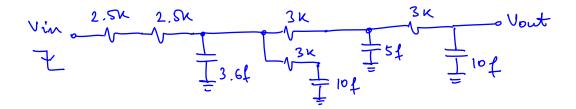

$$V_{\rm IL} = 0.2 V$$

$$V_{\rm IH} = 0.6 V$$

$$NM_{\rm L} = 0V$$
$$NM_{\rm H} = 0.2V$$

gain = -1.5

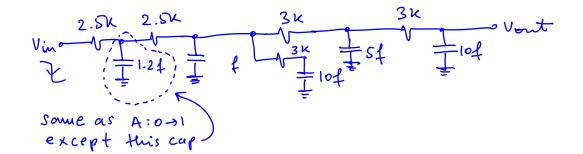
$$E_{0 \rightarrow 1} = 3 f J$$


PROBLEM 3: Elmore Delay (15 pts)

In the circuit shown above, a 2-input NAND gate drives an interconnect, which is modeled by the RC network connected to the NAND gate as shown. Calculate τ_{HL} from A to Y when B = 1 and A = 0 \rightarrow 1. Also calculate τ_{HL} from B to Y when A = 1 and B = 0 \rightarrow 1. Are the two time constants different? Briefly (in one sentence) explain why. NMOS transistors have shared diffusion.

Assume: $R_w = 3 \text{ k}\Omega$, $C_w = 5 \text{ fF}$, $R_{on,N} = 2.5 \text{ k}\Omega$ (each NMOS), $R_{on,P} = 3 \text{ k}\Omega$ (each PMOS), also assume $C_{diffusion} = 1.2 \text{ fF}$, $C_{gate} = 2 \text{ fF}$ for all transistors.

Draw equivalent RC network for A: $0 \rightarrow 1$ (3pts)



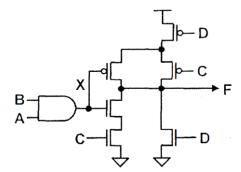
Elmore delay calculation: (3 pts)

$$\tau_{HL}(A:0\to 1) = 5k \cdot 3.6f + 5k \cdot 10f + 8k \cdot 5f + 11k \cdot 10f = 218ps$$

 $\tau_{HL}(A: 0 \to 1) = 218 \text{ps}$

Draw equivalent RC network for B: $0 \rightarrow 1$ (3 pts)

Elmore delay calculation: (3 pts)

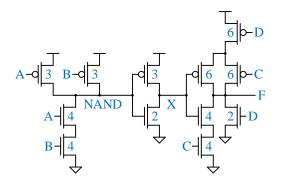

$$\tau_{HL}(B: 0 \to 1) = \tau_{HL}(B: 0 \to 1) + 2.5k \cdot 1.2f = 218ps + 3ps = 221ps$$

 $\tau_{HL}(B: 0 \to 1) = 221 \text{ps}$

Explain the difference in the two time constants: (3 pts)

The time constant for B:0 \rightarrow 1 is larger (by 3ps) since the intermediate node capacitance needs to be discharged.

Problem 4: Sizing and Dynamic Power (15 pts)



For this question assume a unit inverter of size $W_p = 3\mu m$, $W_n = 2\mu m$, $R_N = R_P = R_0$ for the unit inverter, and $C'_{gate} = 2\frac{fF}{\mu m}$, $C'_{diffusion} = 1.5\frac{fF}{\mu m}$ for individual transistors (per μ m of transistor width). Assume $V_{DD} = 1V$ and clock frequency of 1GHz.

(a) Write down the expression for the logic function F in terms of A, B, C and D. (2 pts)

$$F = \overline{A \cdot B \cdot C + D}$$

(b) Draw transistor-level schematic of the whole circuit. Choose appropriate width for the transistors such that the worst-case pull-up and pull-down strength matches that of a unit inverter. Annotate the transistor width (in μm) on the schematic. (3 pts)

(c) Calculate the switching probability $\alpha_{0\to 1}$ at *X* and *F* if all inputs have a probability of logic "1" equal to 0.5, i.e. p(A=1) = p(B=1) = p(C=1) = p(D=1) = 0.5. (4 pts)

$$p(X = 1) = p(A = 1) \cdot p(B = 1) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

$$\alpha_{X:0 \to 1} = p(X = 0) \cdot p(X = 1) = \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{16}$$

$$p(F = 1) = p(D = 0) \cdot (1 - p(C = 1) \cdot p(X = 1)) = \frac{1}{2} \cdot (1 - \frac{1}{2} \cdot \frac{1}{4}) = \frac{7}{16}$$

$$\alpha_{F:0 \to 1} = p(F = 0) \cdot p(F = 1) = \frac{9}{16} \cdot \frac{7}{16} = \frac{63}{256}$$

Node	X	F
$\alpha_{0 \rightarrow 1}$	3/16 (0.1875)	63/256 (0.246)

(d) Calculate the **total average switching power** $P_{sw,tot}$ (neglect short-circuit) dissipated by the circuit. Ignore inter-node (diffusion) capacitance inside the stacks. Consider C_{diffusion} and C_{gate} at the output of the NAND (inside the AND gate), nodes X and F. Tabulate node capacitance at each of the nodes in the table provided below. (6 pts)

$C_{NAND} = 5 \cdot C'_{gate} + 10 \cdot C'_{diffusion} = 25 fF$	
$C_X = 10 \cdot C'_{gate} + 5 \cdot C'_{diffusion} = 27.5 fF$	
$C_F = 18 \cdot C'_{diffusion} = 27 fF$	

Node	Cnode [fF]
NAND	25
X	27.5
F	27

From (c): $\alpha_{NAND:0\to1} = \alpha_{X:0\to1} = \frac{3}{16}$, $\alpha_{F:0\to1} = \frac{63}{256}$

$$P_{sw,NAND} = \alpha_{NAND:0 \to 1} \cdot f_{Clk} \cdot C_{NAND} \cdot V_{DD}^2 = 4.69 \mu W$$
$$P_{sw,X} = \alpha_{X:0 \to 1} \cdot f_{Clk} \cdot C_X \cdot V_{DD}^2 = 5.16 \mu W$$
$$P_{sw,F} = \alpha_{F:0 \to 1} \cdot f_{Clk} \cdot C_F \cdot V_{DD}^2 = 6.64 \mu W$$

$$P_{sw,tot} = P_{sw,NAND} + P_{sw,X} + P_{sw,F}$$

 $P_{sw,tot} = 16.49 \, \mu W$