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Midterm Solutions

Problem 1:

(a) Justifications are given as follows.

Linearity: Let x1(n) and x2(n) be two distinct inputs. By applying their arbitrary lin-
ear combination αx1(n) + βx2(n) to the system, we can see that the output y(n) is equal
to αy1(n) + βy2(n) when n = 5k for an integer k, whereas y(n) = 0 otherwise. Hence,
the superposition principle is satisfied, and the output y(n) is a linear combination of the
individual outputs y1(n) and y2(n). Therefore, the system is linear.

Stability: For every bounded sequence |x(n)| ≤ B < ∞, with B being an arbitrary fi-
nite positive number, we have that

|y(n)| =
{
|x
(
n
5

)
| ≤ B <∞, n = 5k, k is integer

0, n 6= 5k, k is integer,

implying that |y(n)| is a bounded output whenever the input is bounded.

Causality: The system is non-causal because outputs depend on futuristic inputs. For
instance, y(−5) depends on x(−1).

Time-invariance: Consider the inputs δ(n) and δ(n−1). The outputs are δ(n) and δ(n−5).
This shows that y(n) is not time-invariant since applying a shifted-version of an input x(n)
to the system does not result in a shifted-version of the output.

Relaxation: If the first non-zero sample of x(n) is at n = −1, then y(−5) will be non-
zero, which is before −1. Thus, the system is not relaxed.

The system is linear, BIBO stable, non-causal, not time-invariant, and not re-
laxed.



(b) The z-transform Y (z) can be computed as follows

Y (z) =
∞∑

n=−∞

y(n)z−n

=
∞∑

n=−∞

x
(n

5

)
z−n

=
∞∑

k=−∞

x(k)z−5k

=
∞∑

k=−∞

x(k)
(
z5
)−k

= X(z5).

Thus, the z-transform Y (z) in terms of that of X(z) is Y (z) = X(z5).

Problem 2:

(a) The zero-input response is found by figuring out the modes, and then obtaining the
homogeneous solution as a linear combination of the modes as follows. The system’s char-
acteristic equation is

λ2 − 5

6
λ+

1

6
= 0,

which factorizes as

(λ− 1

2
) (λ− 1

3
) = 0,

and hence the modes are given by λ1 = 1
2

and λ2 = 1
3
. A general form of the zero-input

response is then given by

yzi(n) = C1

(
1

2

)n

+ C2

(
1

3

)n

.

Using the initial conditions y(−2) = 1 and y(−1) = 2, we can construct the following
equations. This leads to the equations

2C1 + 3C2 = 2,

4C1 + 9C2 = 1,

the solutions of which is C1 = 5
2

and C2 = −1.

Thus, the zero-input response of the system is yzi(n) = 5
2

(
1
2

)n − (1
3

)n
, n ≥ 0.



(b) We relax the system by forcing zero initial-conditions, which makes the system act
as an LTI system, the impulse response of which is given by y(n) = h(n) when the input is
a unit-sample x(n) = δ(n). That is, we have that

h(n)− 5

6
h(n− 1) +

1

6
h(n− 2) = δ(n− 1).

We know that

h(n) = C1

(
1

2

)n

+ C2

(
1

3

)n

, n ≥ 2.

The initial conditions are obtained by substitutions as h(0) = 0 and h(1) = 1. This leads to
the two equations following equations. This leads to the equations

C1 + C2 = 0,

1

2
C1 +

1

3
C2 = 1,

the solutions of which are C1 = 6 and C2 = −6.

Thus, the impulse response h(n) of the system is h(n) = 6
((

1
2

)n − (1
3

)n)
u(n− 1).

The zero-state response is simply the result of convolving the input x(n) =
(
1
4

)n
u(n) with

h(n) as follows

yzs(n) = x(n) ? h(n)

=
∞∑

k=−∞

h(n− k)x(k)

=
∞∑

k=−∞

(
1

4

)k

u(k) 6

((
1

2

)n−k

−
(

1

3

)n−k
)
u(n− k − 1)

= 6
n−1∑
k=0

(
1

4

)k
((

1

2

)n−k

−
(

1

3

)n−k
)

= 6

(
1

2

)n n−1∑
k=0

(
1

2

)k

− 6

(
1

3

)n n−1∑
k=0

(
3

4

)k

= 6

(
1

2

)n 1−
(
1
2

)n
1− 1

2

− 6

(
1

3

)n 1−
(
3
4

)n
1− 3

4

= 12

(
1

2

)n

− 24

(
1

3

)n

+ 12

(
1

4

)n

.



Thus, the zero-state response yzs(n) is given by yzs(n) = 12
(
1
2

)n−24
(
1
3

)n
+ 12

(
1
4

)n
,

n ≥ 1.

(c) The complete response is given by

yc(n) = yzi(n) + yzs(n),

thus we have that

yc(n) =
5

2

(
1

2

)n

−
(

1

3

)n

+ 12

(
1

2

)n

− 24

(
1

3

)n

+ 12

(
1

4

)n

.

Therefore, the complete response yc(n) is given by

yc(n) =
29

2

(
1

2

)n

− 25

(
1

3

)n

+ 12

(
1

4

)n

, n ≥ 0.

(d)

z
−1

z
−1

5
6

−1
6

+
x(n) y(n)

Figure 1: The block diagram for problem 2-(d).



Problem 3:

(a) The impulse-response should solve the difference equation

h(n) =
1

4
h(n− 1) +

1

8
h(n− 2) + δ(n),

with the initial conditions h(−1) = 0 and h(0) = 1. The characteristic polynomial of the
CCDE is given by

λ2 − 1

4
λ− 1

8
= 0,

where

(λ− 1

2
)(λ+

1

4
) = 0,

thus the modes are λ = 1
2
, −1

4
. Thus, the impulse response is described by the homogeneous

solution as

h(n) = C1

(
1

2

)n

+ C2

(
−1

4

)n

.

With h(−1) = 0 and h(0) = 1, we obtain the following two equations

2C1 − 4C2 = 0,

C1 + C2 = 1,

the solution of which is C1 = 2
3

and C2 = 1
3
.

Therefore, the impulse response is given by

h(n) =
2

3

(
1

2

)n

+
1

3

(
−1

4

)n

, n ≥ 0.

(b) The output is given by

y(n) = x(n) ? h(n)

= (δ(n+ 1)− δ(n− 1)) ? h(n)

= h(n+ 1)− h(n− 1)

=

(
2

3

(
1

2

)n+1

+
1

3

(
−1

4

)n+1
)
u(n+ 1)−

(
2

3

(
1

2

)n−1

+
1

3

(
−1

4

)n−1
)
u(n− 1).

Thus, for −1 ≤ n ≤ 0, we have that

y(n) =
1

3

(
1

2

)n

− 1

12

(
−1

4

)n

,



and for n ≥ 1 we have that

y(n) =
5

4

(
−1

4

)n

−
(

1

2

)n

.

Therefore, the output is given by

y(n) =


0, n < −1,
1
3

(
1
2

)n − 1
12

(−1
4

)n
, −1 ≤ n ≤ 0

5
4

(−1
4

)n − (1
2

)n
, n > 0,

(c) We compute the energy of the sequence for n > 0, if this converges, then the sequence
has to be an energy sequence.

Eg =
∞∑

n=−∞

|g(n)|2

=
∞∑

n=−∞

|αn h(n)|2

=
∞∑

n=−∞

α2n

∣∣∣∣54
(
−1

4

)n

−
(

1

2

)n∣∣∣∣2
=

∞∑
n=−∞

α2n

(
25

16

(
1

16

)n

− 5

2

(
−1

8

)n

+

(
1

4

)n)

=
∞∑

n=−∞

(
25

16

(
α2

16

)n

− 5

2

(
−α2

8

)n

+

(
α2

4

)n)
.

Therefore, for finite energy, we require that∣∣∣∣α2

16

∣∣∣∣ < 1,

∣∣∣∣α2

8

∣∣∣∣ < 1, and

∣∣∣∣α2

4

∣∣∣∣ < 1.

Therefore, we a finite energy sequence requires that

|α| < min
{√

16,
√

8,
√

4
}

= 2.


