MIDTERM EXAMINATION

- (30 PTS) True or False? Explain or give counter-examples:
 - (a) If x(2n) is an energy sequence, then x(n) is also an energy sequence.
 - (b) If x(n) is a periodic sequence then x(2n + 5) is also periodic.
 - (c) Every causal system is relaxed.
 - (d) Every time-invariant system is causal.
 - (e) The series cascade of two time-variant linear systems can be LTI.
 - (f) The system $y(n) = y(n-1) + x^2(2n)$, y(-1) = 0, $n \ge 0$, is time-invariant.
 - (g) $\{z: \frac{1}{2} < |z| < 2\}$ is the ROC of an anti-causal stable LTI system.
 - (h) The zero-state response of a system can be described using a convolution operation.
 - (i) Doubling the sampling period of a signal doubles the number of samples.
 - (j) The same constant-coefficient difference equation with boundary conditions can describe at most two systems.
- 2. (30 PTS) The following information is known about the behavior of a causal LTI system: (a) it has two modes at $\lambda_1 = 1/2$ and $\lambda_2 = 1/4$; (b) its response to $x(n) = (1/3)^n u(n)$ is an exponential sequence of the form $y(n) = \alpha^n u(n)$ with the largest possible energy value.
 - (a) Determine the value of α .
 - (b) Determine a constant coefficient difference equation for the system.
 - (c) If y(n) is applied to the input of the system, what would its response be?
- 3. (20 PTS) Consider a causal system described by the difference equation

$$y(n) = y(n-1) - \frac{1}{4}y(n-2) + \left(\frac{1}{4}\right)^n u(2n-1), \ y(0) = a, \ y(1) = b$$

where a and b are real numbers.

- (a) Find a particular solution to the given system.
- (b) Find the complete solution in terms of a and b.
- (c) Given that $2b a = -\frac{1}{2}$, compute the energy of y(n). For what values of a and b, y(n) has the smallest energy possible?
- 4. (20 PTS) Consider the following system

$$y(n) = \sum_{k=1}^{n} \lambda^{n-k} x(k) x(k+1), \quad n \ge 1$$

$$y(0) = 0$$

where $\lambda \in (0, 1)$.

- (a) Find an expression relating y(n) to y(n-1).
- (b) Is the system causal? linear? stable?
- (c) Is the system relaxed? time-invariant?

EE113 — Fall 2016