22W-EC ENGR-113-LEC-1 Final Exam

MATTHEW FIORELLA

TOTAL POINTS

89 / 100

QUESTION 1

1 Q1 **15 / 15**

✓ - 0 pts Correct

 - 2 pts Correct modes & sequences, partial correct ROC.

 - 2 pts Correct modes & ROC(right/left side), partial correct sequences.

 - 5 pts Correct modes & ROC(right/left side), wrong sequences.

 - 8 pts Correct modes, partial correct ROC/sequences.

 - 10 pts Correct ROC(right/left side), wrong modes/sequences

 - 15 pts No Attempt

QUESTION 2

Q2 15 pts

2.1 Q2.a **5 / 5**

✓ - 0 pts Correct

 - 1 pts Wrong phase+magnitude. Or no plot. Or didn't simply exponential representation.

 - 2 pts Correct DFT formulation with additional coefficient multipliler or calculation error.

- **3 pts** Correct DFT formulation.
- **4 pts** Wrong DFT formulation.

2.2 Q2.b **4 / 5**

- 0 pts Correct

✓ - 1 pts Coefficient 1/4 or incomplete answer

- **1 pts** Correct X(k-1) based on wrong X(k)
- **1 pts** Wrong X(k-1) based on correct X(k)
- **2 pts** Wrong X(k-1) based on wrong X(k)
- **2 pts** wrong inverse DFT formulation/calculation.
- **5 pts** No Attempt

2.3 Q2.c **5 / 5**

✓ - 0 pts Correct

 - 1 pts Wrong calculation

 - 2 pts Wrong circular convolution formulation. Or linear convolution with correct answer.

- **3 pts** Linear convolution with wrong answer.
- **5 pts** No Attempt/Completely Wrong

QUESTION 3

Q3 10 pts

3.1 Q3.a **5 / 5**

- **✓ 0 pts Correct**
	- **2 pts** Partially Correct
	- **5 pts** No Attempt/Completely Wrong

3.2 Q3.b **5 / 5**

- **✓ 0 pts Correct**
	- **1 pts** Calculation error.
	- **2 pts** Partially Correct
	- **3 pts** Wrong inverse DTFT.
	- **5 pts** No Attempt / Completely Wrong

QUESTION 4

Q4 15 pts

4.1 Q4.a **5 / 5**

- **✓ 0 pts Correct**
	- **2 pts** Partially Correct

4.2 Q4.b **5 / 5**

✓ - 0 pts Correct

 - 2 pts Correct h(n) based on wrong partial fractional expansion.

 - 2 pts Wrong h(n) based on correct partial fractional expansion.

 - 4 pts Wrong h(n) based on wrong partial fractional expansion.

 - 5 pts No Attempts.

4.3 Q4.c **4 / 5**

 - 0 pts Correct

✓ - 1 pts Incomplete answer / Calculation Error

 - 2 pts Identify eigenfunction.

 - 3 pts Wrong results using conv or CCDE with some correct procedures.

 - 4 pts Wrong direction with some work.

 - 5 pts No attempt

QUESTION 5

Q5 20 pts

5.1 Q5.a **2.5 / 4**

 - 0 pts Correct

 - 0.5 pts u(n) representation but not specifying n>=1 / calculation error.

✓ - 0.5 pts Correct h(n) based on wrong partial

expansion.

 - 1 pts Wrong h(n) based on wrong partial expansion.

✓ - 1 pts Wrong h1(n) z transform.

- **1 pts** Wrong h2(n) z transform.
- **2 pts** No impulse sequence.

5.2 Q5.b **2 / 4**

- **0 pts** Correct
- **1 pts** Calculation Error / Incomplete

✓ - 2 pts Correct CCDE based on wrong H(z)

- **3 pts** Partially Correct with some work.
- **4 pts** No Attempt

5.3 Q5.c **4 / 4**

✓ - 0 pts Correct

- **1 pts** Inaccurate explanation.
- **3 pts** Correct justification based on wrong modes.
- **4 pts** No Attempt

5.4 Q5.d **3 / 4**

 - 0 pts Correct

 - 1 pts Incorrect choice of x(n) based on correct modes.

 - 2 pts Incorrect x(n) based on wrong modes. / No x(n) with correct modes.

✓ - 1 pts One Incorrect modes.

- **2 pts** Two incorrect modes.
- **4 pts** No Attempt / Complete wrong

5.5 Q5.e **1 / 4**

 - 0 pts Correct

 - 2 pts Incorrect initial conditions based on correct unilateral z-transform.

 - 2 pts Correct initial conditions based on wrong unilateral z-transform

✓ - 3 pts Incorrect initial conditions based on wrong unilateral z-transform.

 - 3 pts Incorrect initial conditions with temporal approach

 - 4 pts No Attempt/Completely Wrong

QUESTION 6

Q6 15 pts

6.1 Q6.a **4.5 / 5**

- **0 pts** Correct
- **✓ 0.5 pts Correct shape, wrong magnitude.**
	- **1 pts** Wrong x1(n)
	- **1 pts** Wrong x2(n)
	- **1 pts** Wrong x3(n)
	- **1 pts** Wrong x4(n)
	- **5 pts** No attempt

6.2 Q6.b **4 / 5**

 - 0 pts Correct

 - 1 pts Series of convolution with correct filter sequence in sinc

✓ - 1 pts Correct with wrong magnitude.

 - 2 pts Series of convolution with minor filter sequence error or didn't specify HPF/LPF Inverse DTFT

 - 3 pts Wrong with some work.

 - 5 pts No Attempt / Completely wrong.

6.3 Q6.c **5 / 5**

✓ - 0 pts Correct, as long as correct justification is made based on your right or wrong plot in your (a).

 - 2 pts Correct justification based wrong discrete frequency.

 - 2 pts Wrong justification based on correct discrete frequency.

 - 4 pts Wrong/no justification based on wrong discrete frequency.

 - 5 pts No Attempt / Complete wrong.

QUESTION 7

Q7 10 pts

7.1 Q7.a **5 / 5**

✓ - 0 pts Correct

- **2 pts** Partially Correct.
- **4 pts** Wrong with some work.
- **5 pts** No Attempt

7.2 Q7.b **5 / 5**

✓ - 0 pts Correct

- **2 pts** Partially Correct
- **4 pts** Wrong with some work.
- **5 pts** No Attempt

ECE113 Digital Signal Processing, Winter 2022

Final Exam

Instructor Prof. Alwan, A.

Name: Matthew Figrella UID: 605 593 729 Email: mfiorell@ucla.edu

Note to Proctors:

- \bullet This examination is closed book but two 8.5 x 11 cheat sheets (double sided) are allowed.
- · Electronics (including calculators or smart phones) are not allowed. 3 hrs in duration.

Note to Students:

- · Please write in dark pen or pencil so there is adequate contrast for readability, especially for remote students whose exams may be sent in by fax.
- · Please explain or justify your work. Answers without justification will not receive full credit.

Points:

FINAL EXAMINATION

1. (15PTS) Determine all possible sequences $x(n)$ with z-transform

٠

$$
X(z) = \frac{36z-11}{12z^2-7z+1}
$$

\n
$$
X(z) = \frac{36z-11}{12z^2-7z+1}
$$

\n
$$
A = \frac{36z-11}{12z^2-7z+1}
$$

\n
$$
A = \frac{36z-11}{4z-1} \Big|_{z>0} = \frac{1}{3} - 3 \Big|_{z=0} = \frac{\frac{3}{2}e-11}{3z-1} + \frac{\frac{8}{2}e-11}{4z-1}
$$

\n
$$
A = \frac{36z-11}{4z-1} \Big|_{z>0} = \frac{1}{3} - 3 \Big|_{z=0} = \frac{3}{3}e-11 \Big|_{z=\frac{1}{4}} = \frac{-2}{-4} - 3 \Big|_{z=\frac{1}{3}} = \frac{-2}{-4} - \frac{1}{4} = -\frac{1}{4} - \frac{1}{3} = \frac{-2}{-4} - \frac{1}{4} = -\frac{1}{4} - \frac{1}{4} = \frac{-2}{-4} - \frac{1}{4} = -\frac{1}{4} - \frac{1}{4} = \frac{-2}{-4} = \frac{-2}{-4}
$$

- 2. (15 PTS) Part (c) of this question is independent of the other two parts.
	- (a) Consider the sequence $x(n) = \delta(n) 2\delta(n-2)$. Find the 4-point DFT $X(k)$ and plot it.
	- (b) Plot $X((k-1) \mod 4)$ and find its 4-point inverse DFT.

(c) Evaluate the circular convolution between $x(n) = \{\boxed{1}, 2, 0, 1\}$ and $h(n) = \{\boxed{-1}, 1, 2, 1\}$. (α) χ cn) = δ cn) - 2δ cn- $2)$ $X(k) = \sum_{n=0}^{N-1} X(n) e^{-\frac{1}{2} \frac{\lambda n k}{N} n} = \sum_{n=0}^{3} \left[\frac{1}{2} (n) - \frac{1}{2} \frac$ $X(k) = 1 - 2(\cos(\pi k) - \sin(\pi k))$ $X(k)$ $X(k) = 1 - 2cos(\pi k)$ 3 $X(0)=|-2=-1$ $X(1) = 1+2=3$ $X(2) = 1-2=-1$ $X(3)=1+2-3$ $(b) \chi((k+1) \mod 4)$ $x(n) = \frac{1}{4} \sum_{k=0}^{3} x(lk) \cdot d\theta$ $X(n) = \frac{1}{4}(3) + \frac{1}{4}(-e^{3\frac{11}{2}n}) + \frac{1}{4}(3e^{3\pi h}) + \frac{1}{4}(-e^{3\frac{11}{2}n})$ $X(n) = \frac{3}{4} - \frac{1}{4}e^{-\frac{1}{3}\frac{\pi}{2}} + \frac{3}{4}e^{-\frac{\pi}{2}} + \frac{1}{4}e^{-\frac{1}{2}\frac{\pi}{2}}n$ $X(n) = \frac{3}{4} - \frac{1}{4}e^{jnn} \left(e^{j\frac{n}{2}n} + e^{j\frac{n}{2}n} - 3 \right)$ $X(n) = \frac{3}{4} - \frac{1}{4}e^{\pi n} (2\omega s(\frac{\pi}{2}n) - 3)$
h(-h mod 4) $e^{\pi n} \cos(\frac{\pi}{2}n) + \frac{3}{2}e^{\pi n}$ $y(0) = (1)(-1) + (2)(1) + (0)(2) + (1)(1) = 2$
 $y(1) = (1)(1) + (2)(-1) + (0)(1) + (1)(2) = 1$ $y(x) = (1)(x) + (2)(1) + (0)(1) + (1)(1) = 57$ 3 of 8 $y_{(h)} = \{2, 1, 5, 4$ y(3) = (4)d(t)(1)(1) +(2)(2) +(0)(1) + (1)(-1) = 4

 ϵ

 $\tilde{\mathbf{u}}$

 $\frac{1}{2} \sum_{i=1}^{2} \frac{1}{2} \sum_{j=1}^{2} \frac{1}{2} \sum_{j=1}^{2$

THE REAL

- 3. (10 PTS) The two parts of this question are independent of one another.
	- (a) Find the DTFT of $x(n) = \cos(\frac{\pi}{6}n) + \sin(\frac{\pi}{4}n)$

(b) Calculate $\sum_{n=-\infty}^{+\infty} \frac{\sin^2(\frac{\pi}{6}n)}{n^2}$. (Hint: Using DTFT and Parseval's Relation may be helpful.) (0) X(n) = $cos(\frac{\pi}{6}n)$ + 4in $(\frac{\pi}{4}n)$ $\chi(n) > \frac{1}{2} \left(e^{\int \frac{1}{\phi} \frac{1}{h}n} + e^{\int \frac{1}{h}n} \right) + \frac{1}{2I} \left(e^{\int \frac{1}{h}n} - e^{\int \frac{1}{h}n} \right)$ $X(h)$ = $\frac{1}{2}e^{j\frac{\pi}{6}n}$ $\frac{1}{2}e^{j\frac{\pi}{6}n} + \frac{1}{2}e^{j\frac{\pi}{4}n} - \frac{1}{2}e^{j\frac{\pi}{4}n}$ $X(e^{J^w}) = \pi \delta(w - \frac{\pi}{6}) + \pi \delta(w + \frac{\pi}{6}) + \frac{\pi}{7} \delta(w - \frac{\pi}{4}) - \frac{\pi}{5} \delta(w + \frac{\pi}{4})$ $\sqrt{\left(\mathrm{e}^{j\mathsf{w}}\right)}=\pi\left(\left\{\left(\mathsf{w}\text{-}\frac{\pi}{6}\right) \text{+}\frac{\mathsf{f}(\mathsf{w})\frac{\pi}{6}}{\pi}\right\}-\frac{\mathsf{f}(\mathsf{w}\text{-}\frac{\pi}{4})}{\pi}\right)$ (b) $\sum_{n=-\infty}^{\infty} \frac{c_{n}^2(\frac{\pi}{6})^n}{n^2}$ $\sum_{n=-\infty}^{\infty} \frac{c_{n}^2 n(\frac{\pi}{6})^n}{n^2}$ $\sum_{n=-\infty}^{\infty} \frac{\pi}{2} \frac{c_{n}^2 (n(\frac{\pi}{6}))^2}{n^2}$ Porseval's Relation: $\sum_{k=-\infty}^{\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{2\pi} |\chi(e^{\tau \omega})|^2 d\omega$ $X(h) = \frac{\pi}{6}$ sinc $\left(\frac{\pi}{6}\right) \leq \pi$ $X(e^{\pi}) = \{T, I\}$ $W \leq \frac{\pi}{6}$ $\sum_{h=-\infty}^{\infty} \frac{\sin^{2}(\frac{\pi}{6}n)}{n^{2}} \sum_{h=-\infty}^{\infty} \left(\frac{\pi}{6} \sin(\frac{\pi}{6}n)\right)^{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(k(e^{j\omega}))^{2} dw = \frac{1}{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{6}} \pi^{2} dw = \frac{1}{2\pi} \left(\pi^{2}(\frac{\pi}{6}) - \pi^{2}(-\frac{\pi}{6})\right)$ $=\frac{1}{2\pi}(\frac{\pi^2}{2})=\frac{\pi^2}{2}$ $\sum_{n=1}^{\infty} \frac{c_{n}^{2}(\frac{1}{2}n)}{n^{2}} = \frac{\pi^{2}}{6}$

4. (15 PTS) Consider the relaxed and causal system

$$
6y(n) - 5y(n-1) + y(n-2) = 2x(n-1).
$$

- (a) Find the frequency response of the above system.
- (b) Find the impulse response $h(n)$ by inverting the frequency response in part (a)
- (c) If the signal $x(n) = \cos(\frac{\pi}{2}n + \frac{\pi}{4})$ is the input to the system, how much would its magnitude be attenuated at the output?

(0)
$$
\oint y(u) - \oint y(u+1) + y(u+2) = 2x(h+1)
$$

\n $\oint Y(e^{2w}) - \oint e^{-2w} Y(e^{2w}) + e^{-2w} Y(e^{2w}) = 2e^{-2w} X(e^{2w})$
\n $\frac{\partial Y(e^{2w})}{\partial Y(e^{2w})} - \frac{\partial Y(e^{2w})}{\partial Y(e^{2w})} = \frac{\partial Y(e^{2w})}{\partial Y(e^{2w})}$
\n $\frac{\partial Y(e^{2w})}{\partial Y(e^{2w})} = \frac{\partial Y(e^{2w})}{\partial$

 $\mathcal{A}^{(i)}$ and $\mathcal{A}^{(i)}$

 \mathcal{D}^{c} , and \mathcal{D}^{c}

 \mathcal{A}

 $\frac{1}{\sqrt{2}}$

 \int_{γ}

Parts (b) (c) (d) (e) on back!

- 5. (20 PTS) A casual system is composed of the series cascade of two LTI systems with impulse response sequences given by $h_1(n) = \left(\frac{1}{2}\right)^n u(2n)$ and $h_2(n) = \left(\frac{1}{4}\right)^n u(n-1)$.
	- (a) Use the z-transform to determine the impulse response sequence and transfer function of the overall system.
	- (b) Determine a description for the overall system in terms of a constant-coefficient difference equation. Denote its input and output sequences by $x(n)$ and $y(n)$, respectively.
	- (c) Decide the stability of the system from the transfer function and its ROC.
	- (d) What are the system's modes? Determine an input sequence such that only the largest mode appears at the corresponding output sequence.
	- (c) Consider the difference sequence in part (a). Use the unilateral z-transform to determine initial conditions $y(-1)$ and $y(-2)$ such that only the smallest mode appears at the output of the system when the input is $x(n) = \delta(n)$.

(a)
$$
h_1(n) = \left(\frac{1}{2}\right)^n u(2n) = \left(\frac{1}{4}\right)^n u(2n) \left(\frac{1}{2n}\right) = \frac{1}{2} \sum_{k=0}^{n} m_k \left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{1-\frac{1}{6} \frac{1}{2} \frac{1}{2}} + \frac{1}{1+\frac{1}{6} \frac{1}{2} \frac{1}{2}}\right) = \frac{1}{2} \left(\frac{1}{1-\frac{1}{6} \frac{1}{2} \frac{1}{2} + \frac{1}{1+\frac{1}{6} \frac{1}{2}}}\right) = \frac{1}{2} \left(\frac{1}{1-\frac{1}{6} \frac{1}{2} \frac{1}{2}}\right) = \frac{1}{2} \left(\frac{1}{1-\frac{1}{6} \frac{1}{2}}\right) = \frac{1
$$

llr 2

(b) $\psi(z) = \frac{\frac{1}{4}z^{-1}}{(1-\frac{1}{4}z)(1-\frac{1}{4}z^{-1})}$, RUC: $|z| > \frac{1}{4}$ $\bigvee_{(z)-\frac{1}{2}z}\bigvee_{(z)+\frac{1}{2}z^{-1}}\bigvee_{(z)=\frac{1}{4}z^{-1}}\bigvee_{(z)}$ $\frac{Y(z)}{X(z)} = \frac{1}{4}z^{-1}$
 $X(z) = (1-\frac{1}{4}z^{-1})(1-\frac{1}{4}z^{-1})$ $\gamma(n) - \frac{1}{16} \gamma(n+1) + \frac{1}{64} \gamma(n-2) = \frac{1}{4} \chi(n-1)$ $\mathcal{Y}(\mathcal{Z})\left(\left|\frac{1}{4}z^{-1}\right|\left|\frac{1}{4}z^{-1}\right\rangle\right)=\frac{1}{4}z^{-1}\mathcal{X}(z)$ ICI The fundament is stable because 121=1 is in the ROC. In other words the unit circle is in the RUC, so we find the system is stable. \mathcal{H}) The modes are $\frac{1}{4}$ and $\frac{1}{16}$. To make only the largest node appear we need to make the smallest disagner. Need input with \neq transferm $1-\frac{1}{16}z^{-1}$ so it will be cancelled out when multiplied by the =) $1-\frac{1}{10}z^{\frac{1}{2}}=\sqrt{8cn-\frac{1}{10}8cn-1})$ (e) yon- $\frac{1}{6}$ yon-1+ $\frac{1}{64}$ yon-21 = $\frac{1}{4}$ xon-1) $Y^+_{(2)} - \frac{1}{16} z^{-1} Y^+_{(2)} \frac{1}{10} Y^{(-1)} + \frac{1}{104} z^{-1} Y^+_{(2)} + \frac{1}{104} Y^{(-1)} z^{-1} + \frac{1}{104} Y^{(-2)} = \frac{1}{14} z^{-1} X^+_{(2)} + \frac{1}{14} \chi(-1)$ XEAtO on External pulted the KLM=SCHK=>X+(2)=) $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix$ $\mathcal{U}_{(2)}(t+1) = \frac{1}{2} \int_{0}^{t} \frac{1}{2} \int_{0}^{t} (1-t)^{2} \left(1-t^{2} \right) \left($ We want $Y^{\dagger}(z)$ = $1-\frac{1}{16}z^{-1}$ = $7\left(1-\frac{1}{4}z^{-1}\right)$ - $\frac{1}{16}y(1)+\frac{1}{11}y(1)z^{-1}+\frac{1}{101}y(-2)-\frac{1}{17}z^{-1}$ $-\frac{1}{2}y(1)+1+\frac{1}{2}y(1)$ $-\frac{1}{4}z^{1}+\frac{1}{64}\gamma(1)z^{1}-\frac{1}{4}z^{1}$ γ (-1) = 32 / γ (-2) - 576

6. (15 PTS) The figure shows the DTFT of a real-valued sequence $x(n)$, which is fed into a cascade of two filters with modulators. The first filter is an ideal lowpass with cutoff frequency

 $w_{\ell} = \frac{\pi}{2}$ radians/sample. The second filter is an ideal highpass with cutoff frequency $w_h = \frac{3\pi}{4}$ radians/sample.

Figure 1: Block diagram for problem 6.

- (a) Draw the DTFT of the sequences $x_1(n), x_2(n), x_3(n)$ and $y(n)$.
- (b) Write the expression for the sequence $y(n)$?

 $\tilde{\epsilon}$

 \mathcal{F}_c

 $\label{eq:3.1} \begin{array}{ccccc} \mathbf{S} & & & \mathbf{S}^1 & & \\ & \mathbf{S} & & \mathbf{S}^1 & & \\ & \mathbf{S} & & \mathbf{S}^1 & & \\ & & \mathbf{S} & & \mathbf{S}^1 & & \\ \end{array}$

- 7. (10 PTS) Three finite-length discrete-time signals $x(n)$, $x_1(n)$ and $x_2(n)$ are shown in Figure 2. In signal $x(n)$, the value of $x(3)$ is an unknown constant c. The sample with amplitude c is not necessarily drawn to scale.
	- (a) Let $X(k)$ and $X_1(k)$ be the 5-point DFTs of $x(n)$ and $x_1(n)$. Suppose $X(k)$ and $X_1(k)$ satisfy the following relation

$$
X_1(k) = X(k)e^{j2\pi 3k/5}.
$$

With the plots of $x(n)$ and $x_1(n)$ and the above relation, derive the value of c.

(b) Let $X_1(k)$ and $X_2(k)$ be the N-point DFTs of $x_1(n)$ and $x_2(n)$. Suppose $X_1(k)$ and $X_2(k)$ satisfy the following relation

$$
X_1(k) = X_2(k)e^{-j2\pi 3k/N}.
$$

With the plots of $x_1(n)$ and $x_2(n)$ and the above relation, derive the value of N.

 $(b) \chi_{(l)} = i^{2n^2k} \chi_{(n)+1} \times (b) \chi_{(l)} = i^{2n(\frac{2k}{N})} \chi_{(l)} = \chi_{(n+3)mod N}$ $X_1(0) = X_2(-3mod N)$
 $X_1(0) = X_2(-3mod N)$
 $2 = X_2(-3mod N)$

need -3 ncd $N = 4$ = 7 $N = 7$ 8 of 8

