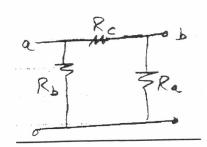
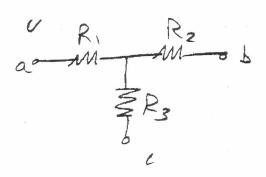
Midterm: EE 10, Fall 2009

Name: _

EE 10 Circuit Analysis I Fall 2009


Midterm Examination


Closed Book

Name:

Student ID No.:

TOTAL _______ / 40

$$R_{4} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{1}}$$

$$R_{5} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}}$$

$$R_{6} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{3}}$$

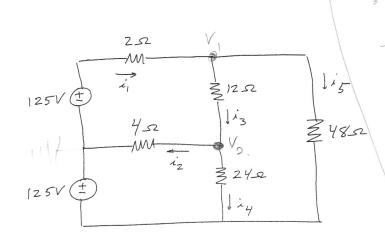
$$R_{6} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{3}}$$

$$R_{1} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}}$$

$$R_{2} = \frac{R_{c}R_{a}}{R_{a} + R_{b} + R_{c}}$$

$$R_{3} = \frac{R_{a}R_{b}}{R_{a} + R_{b} + R_{c}}$$

A 7	
Name:	
Tullic.	


10 pts Problem 1.

Find the current i_0 , i_1 , and i_2 .

$\frac{15\sqrt{\pm}}{\sqrt{5}}$
To = 9 because current cannot flaw in one conductor
Current need to conductors to circulate between the
$V_{\Delta} = \frac{15}{250+1250} = 0.01A$. $V_{\Delta} = 0.01(1250) = 12.5 V$.
$i = 6 \times 10^{-3} (12.5) = 0.075 A$.
$i_1 = -\frac{Rex}{5000}$, $i_2 = -\frac{500 \times 125}{500}$. 0.075 = $-\frac{1500}{500}$
$l_2 = \frac{-\text{Reg}}{125} \cdot \hat{l} = \frac{500\times108}{500+125} \cdot 0.075 = [-0.06\text{A}]_2$

Problem 2.

10 pts Use the node voltage method to find currents $i_1 - i_5$.

$$\frac{V_1 - 105}{2} + \frac{V_1 - V_2}{12} + \frac{V_1 + 125}{48} = 0.$$

$$\frac{V_2}{4} + \frac{V_2 - V_1}{12} + \frac{V_3 + 128}{24} = 0$$

$$\frac{V_{1}\left(\frac{1}{2} + \frac{1}{12} + \frac{1}{48}\right) + V_{2}\left(\frac{1}{12} + \frac{1}{24}\right) + V_{2}\left(\frac{1}{12} + \frac{1}{24}\right) + \frac{125}{48} = 0}{V_{1}\left(\frac{1}{12}\right) + V_{2}\left(\frac{1}{4} + \frac{1}{12} + \frac{1}{24}\right) + \frac{125}{24} = 0}$$

$$0.6041666 \, \text{V}_{1} - 0.083\overline{33} \, \text{V}_{2} = 59.89583$$

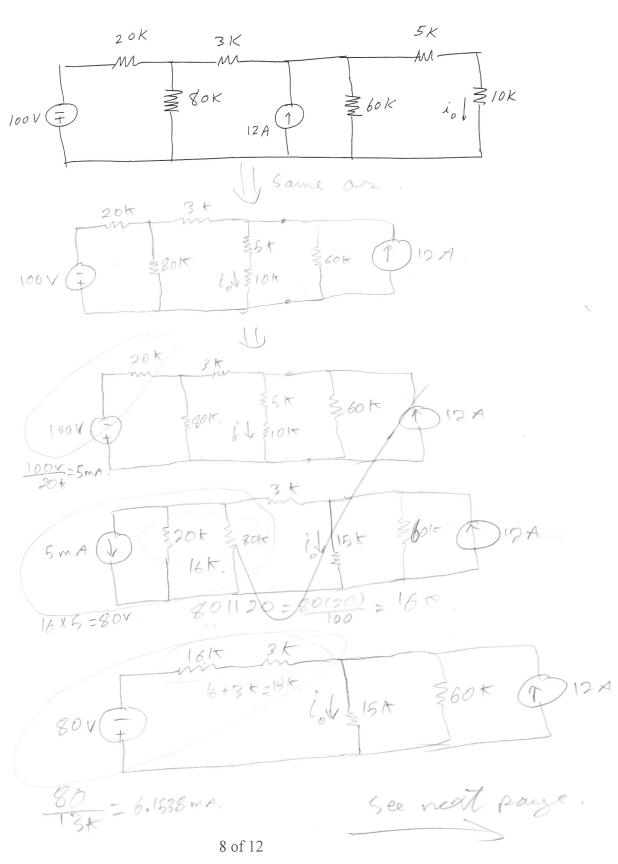
$$-0.08333$$
 V₁ + 0.376 V₂ = -6.20833

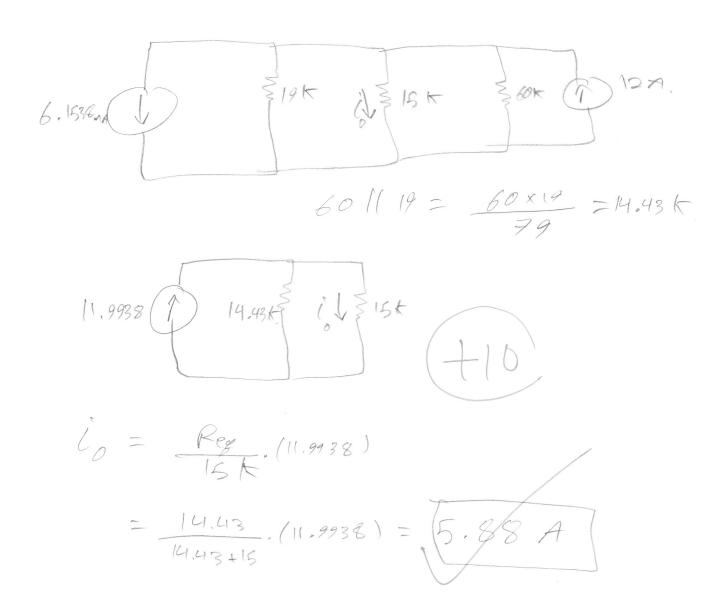
$$\Rightarrow V_1 = 100.29 \text{ V}.$$
 $V_2 = 8.399 \text{ V}.$

$$C_{1} = -\frac{V_{1}-106}{2} = -\frac{100.29-125}{2} = \frac{12.355}{4}$$
 $C_{1} = \frac{V_{2}}{2} = \frac{6.399}{2} - \frac{100.29-125}{2} = \frac{12.355}{4}$

$$i_2 = \frac{\sqrt{2}}{4} = \frac{8.399}{4} = 2.01A$$
 i_2
5 of 12

see next page


$$\frac{1}{3} = \frac{1}{12} = \frac{100.29 - 8.399}{12} = \frac{7.66 \text{ A}}{12}$$


$$\frac{1}{4} = \frac{1}{24} = \frac{8.399 + 125}{24} = \frac{5.558 \text{ A}}{24}$$

$$\frac{1}{6} = \frac{1}{48} = \frac{100.29 + 125}{48} = \frac{14.69 \text{ A}}{15}$$

Problem 3.

Find i_o using a series of source transformations. Be sure to redraw the circuit at each stage.

Problem 4.

10 pts

5 pts

5 pts

(a) For the circuit shown below, write but do not solve, the Mesh current equations in terms of I_A , I_B , I_C , and I_D . You should have 4 equations in all.

(b) For the circuit shown below, write, but do not solve, the Node voltage equations in terms of V_1 , V_2 , and V_3 . You should have 3 equations in terms of V_1 , V_2 , V_3 .

10 of 12

Final mesh egn:

$$I_{A} = 30$$

$$-40I_{A} + 50I_{B} + 35I_{C} - 45I_{D} = -150$$

$$-45I_{B} + 15I_{C} + 45I_{D} = 0$$

$$120I_{A} - 121I_{B} + I_{C} = 0 \times 44$$

(b) Forum The,
$$-30 \pm \frac{V_1}{40} \pm \frac{V_1 - V_2}{10} \pm \frac{V_3 - V_2}{35} \pm i_d = 0.0$$

$$\frac{V_{\gamma}-V_{1}}{10}+\frac{V_{2}-V_{3}}{35}+3i_{\alpha}=0.$$

$$V_1 - V_3 = 15i_d = > i_d = \frac{V_1 - V_3}{15}$$

Dinto D.

$$\frac{V_1}{40} + \frac{V_1 - V_2}{10} + \frac{V_8 - V_2}{35} + \frac{V_1 - V_3}{15} = 30$$

ia = V1 (3)

3) into (4).

$$\frac{V_2 - V_1}{10} + \frac{V_2 - V_3}{35} + \frac{3}{40} = 0.$$

Alro V3 = 150 V 11 of 12

see next roge.

Node Voltage.

VI (
$$\frac{1}{40} + \frac{1}{10} + \frac{1}{15}$$
) $+ \sqrt{2} \left(\frac{1}{10} - \frac{1}{35} \right) + \sqrt{3} \left(\frac{1}{35} - \frac{1}{15} \right) = 30$

VI ($\frac{1}{10} + \frac{3}{40}$) $+ \sqrt{2} \left(\frac{1}{10} + \frac{3}{35} \right) + \sqrt{3} \left(\frac{1}{35} \right) = 30$

V₃ = 150

