Midterm Solutions

Problem 1 (10 points). The cross-product $a \times x$ of two 3-vectors $a = (a_1, a_2, a_3)$ and $x = (x_1, x_2, x_3)$ is defined as the vector

$$
a \times x = \begin{bmatrix} a_2x_3 - a_3x_2 \\ a_3x_1 - a_1x_3 \\ a_1x_2 - a_2x_1 \end{bmatrix}.
$$

- 1. Assume a is fixed and nonzero. Show that the function $f(x) = a \times x$ is a linear function of x, by giving a matrix A that satisfies $f(x) = Ax$ for all x.
- 2. Is the matrix A you found in part 1 singular or nonsingular?
- 3. Verify that $A^T A = (a^T a)I a a^T$.
- 4. Use the observations in parts 1 and 3 to show that for nonzero x ,

$$
\|a \times x\| = \|a\| \|x\| |\sin \theta|
$$

where θ is the angle between a and x.

Solution.

1. $a \times x = Ax$ with

$$
A = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}.
$$

- 2. Singular, because $Aa = 0$ so A has a nonzero vector in its nullspace.
- 3. Working out the matrix product gives

$$
A^{T}A = \begin{bmatrix} a_2^2 + a_3^2 & -a_1a_2 & -a_1a_3 \\ -a_1a_2 & a_1^2 + a_3^2 & -a_2a_3 \\ -a_1a_3 & -a_2a_3 & a_1^2 + a_3^2 \end{bmatrix}
$$

=
$$
\begin{bmatrix} a_1^2 + a_2^2 + a_3^2 & 0 & 0 \\ 0 & a_1^2 + a_2^2 + a_3^2 & 0 \\ 0 & 0 & a_1^2 + a_2^2 + a_3^2 \end{bmatrix} - \begin{bmatrix} a_1^2 & a_1a_2 & a_1a_3 \\ a_1a_2 & a_2^2 & a_2a_3 \\ a_1a_3 & a_2a_3 & a_3^2 \end{bmatrix}
$$

=
$$
(a^T a)I - a a^T.
$$

4. From the expression in part 3,

$$
||a \times x||^2 = x^T A^T A x
$$

= $x^T ((a^T a)I - a a^T)x$
= $(a^T a)(x^T x) - (x^T a)^2$
= $||a||^2 ||x||^2 - (||a|| ||x|| \cos \theta)^2$
= $(||a|| ||x|| \sin \theta)^2$.

Problem 2 (15 points). Let A be defined as

$$
A = I + BB^T
$$

where B is a given orthogonal $n \times m$ matrix (not necessarily square).

- 1. Show that A is positive definite.
- 2. What is the cost (number of flops for large m and n) of solving $Ax = b$ by first computing $A = I + BB^T$ and then applying the standard method for linear equations $Ax = b$ with positive definite A?
- 3. Show that $A^{-1} = I (1/2)BB^{T}$.
- 4. Use the expression in part 3 to derive an efficient method for solving $Ax = b$ (*i.e.*, a method that is much more efficient than the method in part 2.) Give the cost of your method (number of flops for large m and n).

Solution.

1. We verify the definition of positive definite matrix:

$$
x^{T}Ax = x^{T}x + x^{T}BB^{T}x = ||x||^{2} + ||B^{T}x||^{2}.
$$

This is clearly positive for all nonzero x .

- 2. Computing A takes $mn^2 + n$ flops (mn^2) for the symmetric matrix product $B^T B$ and n for adding the identity matrix). The Cholesky factorization costs $(1/3)n^3$. Forward and backward substitution cost $2n^2$. The total is $(1/3)n^3 + mn^2$.
- 3. We show that $AA^{-1} = I$:

$$
(I + BB^{T})(I - \frac{1}{2}BB^{T}) = I - \frac{1}{2}BB^{T} + BB^{T} - \frac{1}{2}BB^{T}BB^{T} = I.
$$

In the last step we use the definition of orthogonal matrix $(B^T B = I)$.

4. We can solve $Ax = b$ by evaluating $x = A^{-1}b$ using the formula in part 3:

$$
x = (I - \frac{1}{2}BB^{T})b = b - \frac{1}{2}B(B^{T}b).
$$

This costs 4mn for the matrix vector products $y = B^T x$ and By, and 2n for the scalar multiplication and addition. The total is 6mn.

Problem 3 (10 points). Let A be a positive definite matrix of size $n \times n$. For what values of the scalar a are the following matrices positive definite?

(a)
$$
\begin{bmatrix} A & ae_1 \\ ae_1^T & 1 \end{bmatrix}
$$
 (b) $\begin{bmatrix} A & e_1 \\ e_1^T & a \end{bmatrix}$ (c) $\begin{bmatrix} A & ae_1 \\ ae_1^T & a \end{bmatrix}$

 $(e_1 = (1,0,\ldots,0))$ denotes the first unit vector of length n.) Give your answer for each of the three problems in the form of upper and/or lower bounds $(a_{\min} < a < a_{\max}, a > a_{\min})$ or $a < a_{\text{max}}$). Explain how you can compute the limits a_{min} and a_{max} using the Cholesky factorization $A = LL^T$. (You don't need to discuss the complexity of the computation.)

Solution. The Cholesky factorizations of the three matrices (if they exist) are

$$
\begin{bmatrix}\nA & ae_1 \\
ae_1^T & 1\n\end{bmatrix} = \begin{bmatrix}\nL & 0 \\
ae_1^T L^{-T} & \sqrt{1 - a^2 e_1^T L^{-T} L^{-1} e_1}\n\end{bmatrix} \begin{bmatrix}\nL^T & aL^{-1} e_1 \\
0 & \sqrt{1 - a^2 e_1^T L^{-T} L^{-1} e_1}\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\nA & e_1 \\
e_1^T & a\n\end{bmatrix} = \begin{bmatrix}\nL & 0 \\
e_1^T L^{-T} & \sqrt{a - e_1^T L^{-T} L^{-1} e_1}\n\end{bmatrix} \begin{bmatrix}\nL^T & L^{-1} e_1 \\
0 & \sqrt{a - e_1^T L^{-T} L^{-1} e_1}\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\nA & ae_1 \\
ae_1^T & a\n\end{bmatrix} = \begin{bmatrix}\nL & 0 \\
ae_1^T L^{-T} & \sqrt{a - a^2 e_1^T L^{-T} L^{-1} e_1}\n\end{bmatrix} \begin{bmatrix}\nL^T & aL^{-1} e_1 \\
0 & \sqrt{a - a^2 e_1^T L^{-T} L^{-1} e_1}\n\end{bmatrix}
$$

This gives the following conditions.

- 1. Positive definite for $|a| < 1/\sqrt{e_1^T L^{-T} L^{-1} e_1} = 1/\|L^{-1} e_1\|.$
- 2. Positive definite for $a > e_1^T L^{-T} L^{-1} e_1 = ||L^{-1} e_1||^2$.
- 3. Positive definite for $0 < a < 1/(e_1^T L^{-T} L^{-1} e_1) = 1/||L^{-1} e_1||^2$.

In each case, we can compute the limits from the norm of the vector $L^{-1}e_1$, which can be computed by solving $Lx = e_1$ via forward substitution.

Problem 4 (15 points). Explain how you can solve the following problems using a single LU factorization and without computing matrix inverses. The matrix A is a given nonsingular $n \times n$ matrix. For each problem, carefully explain the different steps in your algorithm, give the cost of each step, and the total cost (number of flops for large n , excluding the LU factorization itself). If you know several methods, give the most efficient one.

- 1. Compute $(A^{-1} + A^{-T})^2 b$, where b is a given *n*-vector.
- 2. Solve the equation $AXA = B$ for the unknown X, where B is a given $n \times n$ -matrix.
- 3. Compute $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$ $\sum_{j=1}^{n} (A^{-1})_{ij}$, the sum of all the entries of A^{-1} .

Solution.

1. Expanding the product gives

$$
(A^{-1} + A^{-T})(A^{-1} + A^{-T})b.
$$

This can be computed as follows.

- Compute $x = A^{-1}b$ by solving $PLUx = b$ (2n² flops).
	- Solve $Px_1 = b$ (0 flops)
	- Solve $Lx_2 = x_1$ by forward substitution $(n^2 \text{ flops})$.
	- Solve $Ux = x_2$ by back substitution $(n^2 \text{ flops})$.
- Compute $y = A^{-T}b$ by solving $U^{T}L^{T}P^{T}y = b$ (2n² flops).
	- Solve $U^T y_1 = b$ by forward substitution $(n^2 \text{ flops})$
	- Solve $L^T y_2 = y_1$ by back substitution $(n^2 \text{ flops})$.
	- Solve $P^{T} y = y_2$ (0 flops).
- Compute $z = x + y$ (*n* flops).
- Compute $v = A^{-1}z$ by solving $PLUv = z$ as above $(2n^2 \text{ flops})$.
- Compute $w = A^{-T}z$ by solving $U^{T}L^{T}P^{T}w = z$ as above $(2n^{2}$ flops).
- The final result is $v + w$ (*n* flops).

The total is $8n^2$ plus lower order terms.

- 2. We first solve $AY = B$, column by column. We then solve $A^TZ = Y^T$ column by column. The solution Z is the transpos of X .
	- Solve $PLUY = B$, column by column as explained in part 1 ($2n³$ flops).
	- Solve $U^T L^T P^T Z = Y^T$, column by column as explained in part 1 (2n³ flops).

The total is $4n^3$ flops.

- 3. We can write this as $x^T A^{-1}x$ where $x = (1, 1, \ldots, 1)$ is the *n*-vector with entries equal to one.
	- Compute $y = A^{-1}x$ by solving $PLUy = x$ (2n² flops).
	- Compute $\sum_i y_i$ (*n* flops).

The total is $2n^2$ flops.