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Midterm Solutions

Problem 1 (10 points). Express the following problem as a set of linear equations. Find
a cubic polynomial

f(t) = c1 + c2(t − t1) + c3(t − t1)
2 + c4(t − t1)

2(t − t2)

that satisfies

f(t1) = y1, f(t2) = y2, f ′(t1) = s1, f ′(t2) = s2.

The numbers t1, t2, y1, y2, s1, s2 are given, with t1 6= t2. The unknowns are the coefficients
c1, c2, c3, c4. Write the equations in matrix-vector form Ax = b, and solve them.

Solution. We first derive expressions for f(t1), f(t2), f ′(t1), f ′(t2):

f(t1) = c1, f(t2) = c1 + c2h + c3h
2, f ′(t1) = c2, f ′(t2) = c2 + 2c3h + c4h

2

where h = t2 − t1. In matrix notation, the four interpolation conditions are











1 0 0 0
1 h h2 0
0 1 0 0
0 1 2h h2





















c1

c2

c3

c4











=











y1

y2

s1

s2











.

If we exchange the second and third rows, we can solve this by forward substitution. The
solution is

c1 = y1,

c2 = s1,

c3 =
y2 − c1 − hc2

h2

=
(y2 − y1)/h − s1

h
,

c4 =
s2 − c2 − 2hc3

h2

=
s2 − s1 − 2((y2 − y1)/h − s1)

h2

=
s2 + s1 − 2(y2 − y1)/h

h2
.
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Problem 2 (10 points). A diagonal matrix with diagonal elements +1 or −1 is called a
signature matrix. The matrix

S =







1 0 0
0 −1 0
0 0 −1







is an example of a 3 × 3 signature matrix. If S is a signature matrix, and A is a square
matrix that satisfies

AT SA = S, (1)

then we say that A is pseudo-orthogonal with respect to S.

1. Suppose S is an n × n signature matrix, and u is an n-vector with uT Su 6= 0. Show
that the matrix

A = S −
2

uT Su
uuT

is pseudo-orthogonal with respect to S.

2. Show that pseudo-orthogonal matrices are nonsingular. In other words, show that any
square matrix A that satisfies (1) for some signature matrix S is nonsingular.

3. Describe an efficient method for solving Ax = b when A is pseudo-orthogonal. ‘Effi-
cient’ here means that the complexity is at least an order of magnitude less than the
(2/3)n3 complexity of the standard method for a general set of linear equations. Give
the complexity of your method (number of flops for large n).

4. Show that if A satisfies (1) then ASAT = S. In other words, if A is pseudo-orthogonal
with respect to S, then AT is also pseudo-orthogonal with respect to S.

Solution.

1. A is symmetric and

AT SA = (S −
2

uT Su
uuT )S(S −

2

uT Su
uuT )

= S3 −
2

uT Su
S2uuT −

2

uT Su
uuT S2 +

4

(uT Su)2
uuT SuuT

= S −
2

uT Su
uuT −

2

uT Su
uuT +

4

uT Su
uuT

= S.

(We used the fact that S2 = I.)

2. We show that A has a zero nullspace. Suppose Ax = 0. Then

(SAT S)Ax = 0 =⇒ S(AT SA)x = 0 =⇒ S2x = x = 0.
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3. To solve Ax = b, we can multiply both sides of the equation with SAT S on the left to
get

x = SAT Sb.

The multiplications with S involve only sign changes. The multiplication with AT costs
2n2 flops.

4. Multiplying AT SA = S on the left with S gives SAT SA = I. This means that
A−1 = SAT S. For a square matrix AA−1 = A−1A = I. Therefore

ASAT = ASAT S2 = A(SAT S)S = AA−1S = S.
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Problem 3 (10 points). Define a block matrix

K =

[

A B
BT −C

]

,

where the three matrices A, B, C have dimension n×n. The matrices A and C are symmetric
and positive definite. Show that K can be factored as

K =

[

L11 0
L21 L22

] [

I 0
0 −I

] [

LT

11
LT

21

0 LT

22

]

,

where L11 and L22 are lower triangular matrices with positive diagonal elements. The blocks
L11, L21, L22, and the two identity matrices on the righthand side, all have size n × n.

What is the cost of computing this factorization (number of flops for large n)? Carefully
explain your answers.

Solution. If we work out the product in the factorization we get

K =

[

L11L
T

11
L11L

T

21

L21L
T

11
L21L

T

21
− L22L

T

22

]

.

This gives three conditions

A = L11L
T

11
, B = L11L

T

21
, C + L21L

T

21
= L22L

T

22
.

This shows that L11 is the Cholesky factor of A, and L22 is the Cholesky factor of C+L21L
T

21
.

(This last matrix is positive definite because

xT (C + L21L
T

21
)x = xT Cx + xT L21L

T

21
x = xT Cx + ‖LT

21
x‖2

2
> 0

for all nonzero x if C is positive definite.)
The factorization can therefore be computed as follows:

• Cholesky factorization A = L11L
T

11
. ((1/3)n3 flops).

• Compute L21 = BT L−T

11 by solving L11L
T

21
= B. (n3 flops because each column of LT

21

can be computed by forward substitution in n2 flops.).

• Calculate D = C + L21L
T

21
. (n3 flops for the matrix-matrix product, if we take into

account that the result is a symmetric matrix.)

• Cholesky factorization D = L22L
T

22
. ((1/3)n3 flops.)

The total is (8/3)n3 flops, the same complexity as a Cholesky factorization of order 2n.
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Problem 4 (10 points). Describe an efficient method for solving the equation







0 AT I
A 0 0
I 0 D













x
y
z





 =







b
c
d





 .

The nine blocks in the coefficient matrix have size n × n. The matrix A is nonsingular, and
the matrix D is diagonal with nonzero diagonal elements. The vectors b, c, and d in the
righthand side are n-vectors. The variables are the n-vectors x, y, z.

If you know several methods, give the most efficient one. Clearly state the different steps
in your algorithm, give the complexity (number of flops) of each step, and the total number
of flops.

Solution. We can first solve the second equation Ax = c for x, using the standard method
based on the LU factorization. Given x, we solve the third equation Dz = d − x for z.
Finally we solve AT y = b − z for y. We can reuse the LU factorization of A to solve the
equation in y.

1. LU factorization A = PLU ((2/3)n3 flops).

2. Solve PLUx = c by forward and backward substitution (2n2 flops).

• x1 = P T c (0 flops).

• Solve Lx2 = x1 by forward substitution (n2 flops).

• Solve Ux = x2 by backsubstitution (n2 flops).

3. Compute d − x and solve Dz = d − x (2n flops).

4. Compute b − z and solve UT LT P T y = b − z by forward and backward substitution
(2n2 flops.)

• Solve UT y1 = b − z by forward substitution (n2 flops).

• Solve LT y2 = y1 by backsubstitution (n2 flops).

• y = Py2 (0 flops).

The dominant term in the total complexity is (2/3)n3 for the LU factorization.
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