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Midterm Solutions

Problem 1 (10 points). Express the following problem as a set of linear equations. Find
a cubic polynomial

ft) =ci+co(t —t1) +cs(t — 1)) 4+ ca(t —t1)2(t — to)
that satisfies
f(t1) =, f(t2) = yo, f(t1) = s1, f'(ta) = 5.

The numbers t1, ta, y1, Yo, S1, So are given, with t; # t5. The unknowns are the coefficients
c1, Co, C3, ¢4. Write the equations in matrix-vector form Az = b, and solve them.

Solution. We first derive expressions for f(t1), f(t2), f'(t1), f'(t2):
ft) =ci, fta) = 1 + coh + esh?, f(t) = ca, f'(t2) = co + 2c3h + c4h?

where h =ty — t1. In matrix notation, the four interpolation conditions are

1 0 0 0 C1 U1
1 h h2 0 Co . Yo
01 0 0 C3 - S1
0 1 2h h? Cy S9

If we exchange the second and third rows, we can solve this by forward substitution. The
solution is

T = 3/1;
Cy = 81,
_ ya—c1—he
C3 —= —h2
_ (Y2 —y1)/h — 51
h )
S9 — Co — 2h03
“aT T
82— 81— 2((y2 — 1) /h — 51)
= 2
_ Sset+ st =2y —w1)/h
= 2 )



Problem 2 (10 points). A diagonal matrix with diagonal elements +1 or —1 is called a
signature matriz. The matrix

10 0
S=10 -1 0
0 0 -1

is an example of a 3 x 3 signature matrix. If S is a signature matrix, and A is a square

matrix that satisfies
ATSA =S, (1)

then we say that A is pseudo-orthogonal with respect to S.

1. Suppose S is an n X n signature matrix, and u is an n-vector with u?'Su # 0. Show
that the matrix
2 T
uu
ul' Su

A=S5—-

is pseudo-orthogonal with respect to S.

2. Show that pseudo-orthogonal matrices are nonsingular. In other words, show that any
square matrix A that satisfies (1) for some signature matrix S is nonsingular.

3. Describe an efficient method for solving Az = b when A is pseudo-orthogonal. ‘Effi-
cient’ here means that the complexity is at least an order of magnitude less than the
(2/3)n3 complexity of the standard method for a general set of linear equations. Give
the complexity of your method (number of flops for large n).

4. Show that if A satisfies (1) then ASAT = S. In other words, if A is pseudo-orthogonal
with respect to S, then A7 is also pseudo-orthogonal with respect to S.

Solution.

1. A is symmetric and

2 2
T T T
A"SA = (S- uTSuuu )S(S — uTSuuu )
2 T 2 T T T
= S3_ uTSu52uu — uTSuuu S? 4+ (UTSU)QUU Suu
2 T 2 T 4 T
= 9= uTSuuu B uTSuuu + uTSuuu
= S.

(We used the fact that S* = I.)

2. We show that A has a zero nullspace. Suppose Ax = 0. Then

(SATSHYAz =0 = SATSA)z=0 = S*r=x=0.



3. To solve Az = b, we can multiply both sides of the equation with SAT'S on the left to
get
x = SATSh.

The multiplications with S involve only sign changes. The multiplication with AT costs
2n? flops.

4. Multiplying ATSA = S on the left with S gives SATSA = I. This means that
A=t = SATS. For a square matrix AA~! = A=A = I. Therefore

ASAT = ASATS? = A(SATS)S = AAT'S = 8.



Problem 3 (10 points). Define a block matrix

A B
[ 1)

where the three matrices A, B, C have dimension nxn. The matrices A and C' are symmetric
and positive definite. Show that K can be factored as

K — Ly O I 0 Lt L
L21 L22 0 -1 0 Lf21"2 ’
where L1; and Loy are lower triangular matrices with positive diagonal elements. The blocks
Lyy, Loy, Lo, and the two identity matrices on the righthand side, all have size n x n.

What is the cost of computing this factorization (number of flops for large n)? Carefully
explain your answers.

Solution. If we work out the product in the factorization we get

| LuLf; L L3,

K= .
Loy L{} Loy L3, — LypL3,

This gives three conditions
A=LyL{,, B=1LulL), C+ Lyl =Lyl

This shows that Ly, is the Cholesky factor of A, and Las is the Cholesky factor of C'+ Loy LY.
(This last matrix is positive definite because

27 (C+ Ly L)) = 27 Co + 2" Loy LY v = 27 Cx + ||L3,2]|3 > 0

for all nonzero z if C' is positive definite.)
The factorization can therefore be computed as follows:

e Cholesky factorization A = Ly; LY. ((1/3)n® flops).

e Compute Ly = BTLi" by solving L LY, = B. (n® flops because each column of L%
can be computed by forward substitution in n? flops.).

e Calculate D = C + Lo L2, (n?® flops for the matrix-matrix product, if we take into
account that the result is a symmetric matrix.)

e Cholesky factorization D = Loy L3,. ((1/3)n® flops.)

The total is (8/3)n® flops, the same complexity as a Cholesky factorization of order 2n.



Problem 4 (10 points). Describe an efficient method for solving the equation

0 AT T x b
A 0 0 y|=1c
I 0 D z d

The nine blocks in the coefficient matrix have size n x n. The matrix A is nonsingular, and
the matrix D is diagonal with nonzero diagonal elements. The vectors b, ¢, and d in the
righthand side are n-vectors. The variables are the n-vectors x, y, 2.

If you know several methods, give the most efficient one. Clearly state the different steps
in your algorithm, give the complexity (number of flops) of each step, and the total number
of flops.

Solution. We can first solve the second equation Az = ¢ for x, using the standard method
based on the LU factorization. Given x, we solve the third equation Dz = d — z for z.
Finally we solve ATy = b — 2z for y. We can reuse the LU factorization of A to solve the
equation in y.

1. LU factorization A = PLU ((2/3)n3 flops).
2. Solve PLUz = ¢ by forward and backward substitution (2n* flops).

o 2, = PTc (0 flops).
e Solve Lxy = x; by forward substitution (n? flops).

e Solve Uz = x5 by backsubstitution (n* flops).
3. Compute d — x and solve Dz = d — z (2n flops).

4. Compute b — z and solve UTLTPTy = b — 2 by forward and backward substitution
(2n? flops.)

e Solve UTy; = b — z by forward substitution (n? flops).
e Solve LTy, = y; by backsubstitution (n* flops).
e y = Py, (0 flops).

The dominant term in the total complexity is (2/3)n® for the LU factorization.



