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EE103

Final Exam Solutions

Problem 1 (10 points).

c
a

b
θ

The length of one side of a triangle (c) can be calculated from the lengths of the two other sides (a
and b) and the opposing angle (θ) by the formula

c =
√

a2 + b2 − 2ab cos θ. (1)

Two equivalent expressions are

c =
√

(a − b)2 + 4ab (sin(θ/2))2 (2)

and
c =

√

(a + b)2 − 4ab (cos(θ/2))2. (3)

(The equivalence of the three formulas follows from the identities cos θ = 1 − 2 (sin(θ/2))2 and
cos θ = −1 + 2 (cos(θ/2))2.)
Which of the three formulas gives the most stable method for computing c if a ≈ b and θ is
small? For simplicity you can assume that the calculations are exact, except for a small error in
the evaluation of the cosine and sine functions. Explain your answer.

Solution. Expressions (1) and (3) suffer from cancellation; expression (2) does not.
Cancellation occurs when two numbers are subtracted that are almost equal, and one or both
are subject to error. Therefore cancellation occurs in the subtraction in (1) and (3). In (2) we
also subtract two almost equal numbers a and b, but they are not subject to error (under the
assumptions of the problem).

Problem 2 (10 points) How many IEEE double precision floating-point numbers are contained
in the following intervals?

1. The interval [1/2, 3/2).

2. The interval [3/2, 5/2).

Explain your answer.



Solution.

1. 3 · 251. The floating-point representations of the numbers 1/2, 1, and 3/2 are

1/2 = (.100 · · · 0)2 · 20, 1 = (.100 · · · 0)2 · 21, 3/2 = (.110 · · · 0)2 · 21.

There are 252 floating-point numbers in [1/2, 1) and 251 in [1, 3/2).

2. 3 · 250. The floating-point representations of the numbers 3/2, 2, and 5/2 are

3/2 = (.1100 · · · 0)2 · 21, 2 = (.1000 · · · 0)2 · 22, 5/2 = (.1010 · · · 0)2 · 22.

There are 251 floating-point numbers in [3/2, 2) and 250 floating-point numbers in [2, 5/2).

Problem 3 (10 points). Explain how you would solve the following problem using the Gauss-
Newton algorithm. Fit a circle

(u − uc)
2 + (v − vc)

2 = R2

to m given points (ui, vi) in a plane. In other words, determine uc, vc, R such that

(ui − uc)
2 + (vi − vc)

2 ≈ R2, i = 1, . . . , m.

The variables are the coordinates of the center uc, vc, and the radius R.

Your description should include:

• The cost function that you minimize.

• The matrix A and the vector b in the least-squares problem

minimize ‖Ax − b‖

that you solve at each iteration.

You do not have to discuss the choice of starting point, the stopping criterion, and the line search.
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Solution.

• We use as variables x = (R, uc, vc), and minimize the function

g(x) =
m

∑

i=1

ri(x)2, ri(x) = R2 − (ui − uc)
2 − (vi − vc)

2.

• At each iteration we minimize ‖Ax − b‖ where

A =







∇r1(x̂)T

...
∇rm(x̂)T






, b = Ax̂ −







r1(x̂)
...

rm(x̂)







and x̂ = (R̂, ûc, v̂c) is the current iterate. The gradient of ri is

∇ri(x̂) = 2







R̂
ui − ûc

vi − v̂c







and therefore
A = 2

[

R̂1 u − ûc1 u − v̂c1
]

where 1 is the m-vector with all its entries equal to one, and u and v are the m-vectors with
entries ui and vi.

Problem 4 (10 points). If A is an m × n-matrix with a zero nullspace, and D is an m × m
diagonal matrix with positive diagonal elements, then the coefficient matrix of the equation

[

D2 A
AT 0

] [

x̂
ŷ

]

=

[

b
c

]

is nonsingular. Therefore the equation has a unique solution x̂, ŷ.

1. Show that x̂ is the solution of the optimization problem

minimize ‖Dx − D−1b‖2

subject to AT x = c.

2. Show that ŷ is the solution of the optimization problem

minimize ‖D−1(Ay − b)‖2 + 2cT y.

(Hint: set the gradient of the cost function to zero.)

3. Describe an efficient method, based on the QR factorization of D−1A, for computing x̂ and
ŷ. Clearly state the different steps in your algorithm, the complexity of each step (number of
flops for large m, n), and the total complexity.
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Solution. We first derive expressions for x̂ and ŷ. From the first equation, x̂ = D−2(b − Aŷ).
Substituting this in the second equation gives AT D−2b − AT D−2Aŷ = c. Hence

ŷ = (AT D−2A)−1(AT D−2b − c)

x̂ = D−2(b − Aŷ)

= D−2
(

b − A(AT D−2A)−1(AT D−2b − c)
)

.

1. This problem can be reduced to a least-norm problem via a change of variables z = Dx−D−1b,
x = D−1(z + D−1b):

minimize ‖z‖2

subject to AT D−1z = c − AT D−2b.

From the theory of least-norm problems we know that the solution is

z = D−1A(AT D−2A)−1(c − AT D−2b).

Therefore
x = D−1(z + D−1b) = D−2

(

A(AT D−2A)−1(c − AT D−2b) + b
)

,

the same solution as x̂ derived above.

2. We write the cost function as

f(y) = (D−1(Ay − b))T (D−1(Ay − b)) + 2cT y

= yT AT D−2Ay − 2bT D−2Ay + bT D−2b + 2cT y.

This is has the general form of a quadratic function g(y) = yT Py + qT y + r with gradient
∇g(y) = 2Py + q. Setting the gradient of f with respect to y equal to zero therefore gives

∇f(y) = 2AT D−2Ay − 2AT D−2b + 2c = 0,

and
y = (AT D−2A)−1(AT D−2b − c),

the same solution as ŷ derived above.

3. We use the QR factorization D−1A = QR. The expressions for x̂ and ŷ then reduce to

ŷ = (RT R)−1(RT QT D−1b − c)

= R−1(QT D−1b − R−T c)

x̂ = D−2(b − Aŷ)

= D−2(b − QRŷ)

The different steps are

• Compute D−1A (mn flops) and factor it as D−1A = QR (2mn2 flops).

• Compute D−1b (m flops) and u = QT D−1b (2mn flops).

• Solve RT v = c by forward substitution (n2 flops) and compute w = u − v (n flops).

• Solve Rŷ = w by backsubstitution (n2 flops).

• Compute Qw (2mn flops) and x̂ = D−2(b − Qw) (3m flops.)

The total for large m, n is 2mn2.
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Problem 5 (10 points). An m × n-matrix A is given in factored form

A = UDV T

where U is m× n and orthogonal, D is n× n and diagonal with nonzero diagonal elements, and V
is n × n and orthogonal. Describe an efficient method for solving the least-squares problem

minimize ‖Ax − b‖2.

‘Efficient’ here means that the complexity is substantially less than the complexity of the standard
method based on the QR factorization. What is the cost of your algorithm (number of flops for
large m and n)? (Note: we assume that U , D, V are given; you are not asked to include the cost
of computing these matrices in the complexity analysis.)

Solution.
We use the following properties:

• U is orthogonal. Hence by definition UT U = I.

• D is diagonal with nonzero diagonal elements. Therefore it is nonsingular and its inverse D−1

is the diagonal matrix with 1/Dii on the diagonal.

• V is orthogonal and square. Therefore V is nonsingular and V −1 = V T .

The solution of the least-squares problem satisfies the normal equations

AT Ax = AT b.

Replacing A with UDV T and using the property UT U = I gives

V D2V T x = V DUT b.

Multiplying with (V D2V T )−1 = V D−2V T on the left gives

x = V D−1UT b.

The cost of evaluating V D−1UT b is 2mn + n + 2n2 ≈ 2mn + 2n2 flops. (2mn for the matrix-vector
product UT b, n for the multiplication with D−1, and 2n2 for the matrix-vector product with V .
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Problem 6 (10 points) Let L be a nonsingular n× n lower triangular matrix with elements Lij .
Show that

κ(L) ≥ maxi=1,...,n |Lii|
minj=1,...,n |Ljj |

.

Solution. By definition κ(L) = ‖L‖‖L−1‖. To bound κ we use the inequalities

‖L‖ ≥ ‖Lx‖
‖x‖ , ‖L−1‖ ≥ ‖L−1y‖

‖y‖ ,

where x and y are nonzero vectors.
We choose x = ei (the ith unit vector, i.e., a vector of zeros except for an element equal to one in
position i). Then Lx is the ith column of L, and (Lx)i = Lii. Therefore ‖Lx‖ ≥ |Lii|. This proves
that ‖L‖ ≥ |Lii|.
We choose y = ej . If we determine L−1y by forward substitution, we find that (L−1y)j = 1/Ljj .
Therefore ‖L−1y‖ ≥ 1/|Ljj |. This proves ‖L−1‖ ≥ 1/|Ljj |.
Multiplying the two bounds gives κ(L) ≥ |Lii|/|Ljj | for all i and j.

Problem 7 (10 points) Suppose A is an n × n positive definite matrix. For what values of the
scalar β is the matrix

[

A −A
−A βA

]

positive definite? Explain your answer.

Solution. A matrix is positive definite if and only if it has a Cholesky factorization. Let A = LLT

be the Cholesky factorization of A. We determine the Cholesky factorization of the block matrix:

[

LLT −LLT

−LLT βLLT

]

=

[

L11 0
L21 L22

] [

LT
11 LT

21

0 LT
22

]

,

with L11 and L22 lower triangular. From the 1,1 block we see that LLT = L11L
T
11. Therefore

L11 = L. From the 2,1 block −LLT = L21L
T . Therefore L21 = −L. Finally, from the 2,2 block

(β − 1)LLT = L22L
T
22.

If β ≤ 1 the matrix on the left is not positive definite, so it cannot be factored as L22L
T
22. We

therefore obtain the condition β > 1 and L22 =
√

β − 1L.
An alternative approach is to use the definition of positive definite matrix. The block matrix is
positive definite if and only if

[

x
y

]T [

A −A
−A βA

] [

x
y

]

> 0
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for all nonzero (x, y). We have

[

x
y

]T [

A −A
−A βA

] [

x
y

]

= xT Ax − 2yT Ax + βyT Ay

= (x − y)T A(x − y) + (β − 1)yT Ay.

This is positive for all nonzero x, y if and only if β > 1.

Problem 8 (10 points). The figure shows m = 50 points (ti, yi) as circles. These points are well
approximated by a function of the form

f(t) =
eαt+β

1 + eαt+β
.

(An example is shown in dashed line).
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Formulate the following problem as a linear least-squares problem. Find values of the parameters
α, β such that

eαti+β

1 + eαti+β
≈ yi, i = 1, . . . , m, (4)

You can assume that 0 < yi < 1 for i = 1, . . . , m.
Clearly state the error function you choose to measure the quality of the fit in (4), and the matrix
A and the vector b of the least-squares problem.
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Solution. The inverse of the nonlinear function h(x) = ex/(1+ ex) is h−1(y) = log(y/(1−y)), i.e.,

y =
ex

1 + ex
⇐⇒ x = log

(

y

1 − y

)

.

Applying this nonlinear transformation to the two sides of (4) gives a linear set of equations

αti + β ≈ log

(

yi

1 − yi

)

, i = 1, . . . , m.

This means that if we use as error function

m
∑

i=1

(

αti + β − log(
yi

1 − yi

)

)2

we get a linear least-squares problem with

x =

[

α
β

]

, A =













t1 1
t2 1
...

...
tm 1













, b =













log(y1/(1 − y1))
log(y2/(1 − y2))

...
log(ym/(1 − ym))













.
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