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1. Signal and System Basics (50 points)

(a) (16 points) Consider an LTI system whose response to the signal x(t) in Figure (1a)
is the signal y () illustrated in Figure (1b).
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Figure 1: Input-output relationship

i. (8 points) Determine and sketch the response of the system to the input wa(t)
shown in Figure (1c).
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ii. (8 points) Determine and sketch the response of the system to the input x3(t)
shown in Figure (1d).
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(b) (24 points) For each statement below, determine whether it is true or false. You must
justify your answer to receive full credit.

i. (8 points) If T (x) and Ty (x) are LTI systems, then T»(7}(x)) must be LTI
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iii. (8 points) Consider a time-invariant system with input z(¢) and output y(t). If
x(t) is periodic with period T', then y(¢) is also periodic with period T.
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(c¢) (10 points) The signal y(t) is generated by convolving a band-limited signal z;(¢) with
another band-limited signal x2(t), that is:
y(t) = @1 (t) * 22(t) (1)

where,

Xi(jw) =0 for |w| > 10007
X2 (jw) = 0 for |w| > 20007

Next, y(t) is sampled via an impulse train to obtain

—+00
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Specify the range of values for the sampling period T which ensures that y(¢) is recov-
erable from y,(t).
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2. Fourier transform, Frequency response and Output of LTI systems (50 points)

(a) (30 points) Consider an LTI system with the impulse response:

h(t) = (7‘(‘ sin(5t) sin(15¢)
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ii. (15 points) Compute the Fourier transform of

w sin(5¢) sin(15¢)
5 mt Tt

You must indicate which properties and pairs you are using to arrive at your an-
swer. You must show all steps to receive credit.

Hint: You may find the following Fourier Transform useful.
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iii. (10 points) Use the properties of Fourier transform to determine the frequency
response H (jw) = F[h(t)] and plot it on graph on the next page. You must
indicate which property you are using to arrive at your answer. You must show all
steps to receive credit. For your convenience, recall that h(t) is:

h(t) = <75TSin7St) Sinfrlf’t)) 97 sin(20¢)
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Figure 2: Frequency response of LTI system
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(b) (20 points) Consider an LTI system with Frequency response shown below:

3 T T T T T T T T T T T T T T T T
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Figure 3: Frequency Response of LTI system

For the LTI system with the frequency response sketched above, determine the output
y(t) for the input z(t) given below, which is the Fourier Series expansion for a periodic
sawtooth waveform with fundamental frequency wy = 5 rads/sec.

k=00 .
x(t) = Z apeltot

k=—o0

where,

ak:j(km) fork #£0, ag =0

Show your work and write your expression for y(t) in the space provided below and on
the next page.
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3. Modulation and demodulation (56 points)

It is given that input signals a(t) and b(t) are real and even, with Fourier Transforms shown
below.

A(jw) B(jw)

e

—Wm Wm w —Wm Wm

Consider the system below:

a(t) /;(\ H, d(t)
p(t) G>—> H, ) cos(wst)
b(1) W0

pt—1) sin(wst)

Where we define the following filters with conditions:

N Y ws — wm < |w] < ws + Wi,
Hi(jw) = { 0, otherwise.

Hy(jw) = { 0, otherwise.

p(t) =3 6(t —nT)

2
T = ws > 2Wm

Note: You are not required to consider amplitude scaling when answering this question.
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(a) (15 points) In lectures, we found the Fourier Transform of the impulse train using the

Fourier Series. Using a similar argument, derive the Fourier Transform of the shifted

. . T
impulse train, p(t — 7).

Hint: Recall e77% = —j. You may need this to simplify your solution.
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(b) (16 points) Plot the Real and Imaginary components of C(jw) (the Fourier Transform
of the output signal of the bandpass filter Hy).
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(¢) (16 points) Plot the Real and Imaginary Components of D(jw) and F'(jw).
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(d) (9 points) Describe how d(t) relates to a(t) and/or b(t).
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4. Laplace Transform (46 points)

(a) (20 points) Find the Laplace transforms of the following signals and determine their
region of convergence.
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(b) (10 points) Find the inverse Laplace transform f(¢) for the following F(s). (f(t) is a
causal signal.)
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(c¢) (16 points) Prove the following statements
i. (8 points) If z(t) is an even function, so that z(t) = x(—t), then X (s) = X(—s).

X(S) = f" xe” dt et T -t
) o dt' = -4t
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ii. (8 points) If z(¢) is an odd function, so that x(t) = —z(—t), then X(s) = —X(—s).
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Bonus (15 points)

This problem is about determining the Fourier Transform of the signal x,(t) = tan~!(at),
working through a sequence of successive steps. Clearly delineate your work and circle your answer
for each part below.

1. (10 points) Compute the Fourier transform of
z(t) = tan"1(t)
Hint: You might find the following calculus result useful

1

d 1
g )= —
an” " (t) e

dt
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2. (3 points) Does your answer for part (a) have a real part? Explain how your answer is
consistent with the symmetry properties of the Fourier Transform.

3. (2 points) Now use one of the properties of the Fourier Transform to determine the Fourier
Transform for the more general case below, where a is a real-valued positive constant.

Tq(t) = tan™!(at)
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