UCLA DEPARTMENT OF ELECTRICAL ENGINEERING

EE102: SYSTEMS & SIGNALS

Midterm I Solutions Winter Quarter 2017

Problem 1 (20 pts)

(a) The signals after basic operations are

Figure 1: Problem 1 (a)

(b) Energy of $x(t)$ is

$$
E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-1}^2 \sin^2(\pi t) dt = \int_{-1}^2 [0.5 - 0.5 \cos(2\pi t)] dt
$$

=1.5 - 0.5 $\int_{-1}^2 \cos(2\pi t) dt = 1.5 - 0.25 \sin(2\pi t)|_{-1}^2 = 1.5$

Energy of $2x(-t-1)$, $x(t/3+1)$ are 6 and 4.5, respectively. You can use similar integral or resort to general results from part (c).

(c) The energy is

$$
\int_{-\infty}^{\infty} \left[Ax(Bt + C) \right]^2 dt = A^2 \int_{-\infty}^{\infty} x^2 (Bt + C) dt
$$

Use change of variable $\sigma = Bt + C$, the above equation can be written as

$$
\frac{A^2}{B} \int_{-\infty}^{\infty} x^2(\sigma) d\sigma = \frac{A^2}{B} E_x, \text{ if } B > 0
$$

$$
\frac{-A^2}{B} \int_{-\infty}^{\infty} x^2(\sigma) d\sigma = \frac{-A^2}{B} E_x, \text{ if } B < 0
$$

Therefore energy of new signal is $\frac{A^2 E_x}{|B|}$ where $E_x = 3/2$ is the energy of original signal $x(t)$.

(d) The even and odd components are shown in Figure 2.

Figure 2: Problem 1 (d)

Problem 2 (20 pts)

- (a) The system is time-invariant since IRF $h(t, \tau)$ is function of $t \tau$. We can further write is as $h(t) = e^{-2t}u(t)$
- (b) The system is causal since IRF $h(t, \tau)$ is zero when $t < \tau$.

(c) The system is BIBO stable since

$$
\int_{-\infty}^{\infty} |h(t)| dt = \int_{0}^{\infty} e^{-2t} dt = 0.5
$$

is a finite value.

(d) The IPOP relation can be rewritten as

$$
y(t) = \int_{-\infty}^{\infty} e^{-2(t-\tau)} u(t-\tau) x(\tau) d\tau.
$$

The output associated with $x_1(t) = \delta(t-1)$ is

$$
y_1(t) = \int_{-\infty}^{\infty} e^{-2(t-\tau)} u(t-\tau) \delta(\tau-1) d\tau
$$

$$
= e^{-2(t-1)} u(t-1) \int_{-\infty}^{\infty} \delta(\tau-1) d\tau
$$

$$
= e^{-2(t-1)} u(t-1)
$$

(e) The output associated with $x_2(t) = u(1-t)$ is

$$
y_2(t) = \int_{-\infty}^{\infty} e^{-(t-\tau)} u(t-\tau)u(1-\tau)d\tau
$$

If $t > 1$

$$
y_2(t) = \int_{-\infty}^1 e^{-2(t-\tau)} d\tau = e^{-2t} \int_{-\infty}^1 e^{2\tau} d\tau = 0.5e^{-2t+2}
$$

If $t \leq 1$

$$
y_2(t) = \int_{-\infty}^t e^{-2(t-\tau)} d\tau = e^{-2t} \int_{-\infty}^t e^{2\tau} d\tau = 0.5.
$$

Problem 3 (15 pts)

The IPOP can be written as:

$$
y(t) = \int_{-\infty}^{\infty} e^{t-\tau} \sin[2(t-\tau) - 4]u(t-\tau)x(\tau)d\tau
$$
 (1)

Therefore,

- (a) IRF is $h(t, \tau) = e^{t-\tau} \sin[2(t-\tau) 4]u(t-\tau) = h(t-\tau)$ and $h(t) =$ $e^t \sin(2t-4)u(t)$.
- (b) The system is C, because $h(t, \tau) = 0$ for $t < \tau$ or $h(t) = 0$ for $t < 0$. Alternatively, the system is C because $y(t)$ depends on inputs upto time t.
- (c) The system is TI, since $h(t, \tau) = h(t \tau)$.
- (d) We have $\int_{-\infty}^{\infty} |h(t)|dt = \int_{0}^{\infty} e^{t} |\sin(2t 4)|dt \to \infty$ because $e^{t} \to \infty$ at $t \to \infty$. Therefore, the system is not BIBO stable.

Problem 4 (20 pts)

(a) The signal $x_2(t)$ can be written as

$$
x_2(t) = x_1(t+1) - x_1(t)
$$

Therefore, $a_1 = 1, \tau_1 = -1, a_2 = -1, \tau_2 = 0.$

(b) Using the property of LTI system, the output signal corresponding to $x_2(t)$ can be written as

$$
y_2(t) = y_1(t+1) - y_1(t)
$$

therefore the signal $y_2(t)$ has following shape

Problem 5 (20 pts)

(a)
$$
h_2(t) = u(\alpha - t)u(t)
$$
 or $h_2(t) = u(t) - u(t - a)$.

(b) Applying the impulse at input of S_1 , $x(t) = \delta(t - \tau)$, we get the IRF of S_1 :

 $h_1(t, \tau) = \delta(t - \tau) \cos(2\pi f_0 t)$. Then, applying the IRF $h_1(t, \tau)$ at input of S_2 , we get IRF h_{12} :

$$
h_{12}(t,\tau) = \int_{-\infty}^{\infty} h_2(t,\sigma) h_1(\sigma,\tau) d\sigma \tag{2}
$$

(i) Method 1: Using $h_2(t) = u(\alpha - t)u(t)$ We have $h_2(t, \sigma) = h_2(t - \sigma) = u(\alpha - t + \sigma)u(t - \sigma)$ and $h_1(\sigma, \tau) =$ $\delta(\sigma - \tau) \cos(2\pi f_0 \sigma)$. Therefore,

$$
h_{12}(t,\tau) = \int_{-\infty}^{\infty} \delta(\sigma - \tau) \cos(2\pi f_0 \sigma) u(\alpha - t + \sigma) u(t - \sigma) d\sigma \quad (3)
$$

$$
= \cos(2\pi f_0 \tau) u(\alpha - t + \tau) u(t - \tau).
$$
\n(4)

The last equality is obtained by substituting $\sigma = \tau$ in remaining integrand by using property of the impulse.

(ii) Method 2: Using $h_2(t) = u(t) - u(t - \alpha)$ We have $h_2(t, \sigma) = h_2(t - \sigma) = u(t - \sigma) - u(t - \sigma - \alpha)$ and $h_1(\sigma, \tau) = \delta(\sigma - \tau) \cos(2\pi f_0 \sigma)$. Therefore,

$$
h_{12}(t,\tau) = \int_{-\infty}^{\infty} \delta(\sigma - \tau) \cos(2\pi f_0 \sigma) \left[u(t - \sigma) - u(t - \sigma - \alpha) \right] d\sigma
$$
\n(5)

$$
= \cos(2\pi f_0 \tau) \left[u(t-\tau) - u(t-\tau-\alpha) \right]. \tag{6}
$$

The last equality is obtained by substituting $\sigma = \tau$ in remaining integrand by using property of the impulse.

- (c) S_1S_2 in TV, because $h_{12}(t, \tau) \neq h_{12}(t \tau)$.
- (d) The system is C, because $h_{12}(t, \tau) = 0$ for $t < \tau$.

Problem 6 (15 pts)

(a) System is C, because $h(t) = 0$ for $t < 0$.

(b)

$$
H(s) = \mathcal{L}[\cos(2\pi t)u(t)] + \mathcal{L}[\sin(4\pi t)u(t)]
$$

= $\frac{s}{s^2 + 4\pi^2} + \frac{4\pi}{s^2 + 16\pi^2}$, ROC: $\Re(s) > 0$ (7)

(c) Using eigen-function property of exponential functions:

$$
y(t) = e^{2t} H(s = 2)
$$

= $e^{2t} \times \left(\frac{2}{4 + 4\pi^2} + \frac{4\pi}{4 + 16\pi^2}\right)$
= $e^{2t} \times \left(\frac{1}{2 + 2\pi^2} + \frac{\pi}{1 + 4\pi^2}\right)$
= $e^{2t} \times \left(\frac{1 + 2\pi + 4\pi^2 + 2\pi^3}{2 + 10\pi^2 + 8\pi^4}\right), t \in (-\infty, \infty).$ (8)

Additional problem 1

(a) False. The result of $y(t) = \cos(2\pi t) * h(t)$ can be interpreted as output of LTI system whose IRF is $h(t)$ and the input is $\cos(2\pi t)$. Due to the eigenfunction property, the output is

$$
y(t) = \frac{1}{2}H(2\pi j)e^{2j\pi t} + \frac{1}{2}H(-2\pi j)e^{-2j\pi t}
$$

Therefore it is always $A \cos(2\pi t - \theta)$.

Grading comments: Full credit is not given if one simply states "frequency will not change" without further reasoning.

(b) False. Two poles are at $s = 1 \pm j$, which are in right half plane. Therefore the ROC does not contains $j\Omega$ axis.

Additional problem 2

(a)

$$
x(t) = \cos(3t)u(t - 2\pi)
$$

= cos(3(t - 2\pi) + 6\pi)u(t - 2\pi)
= cos(3(t - 2\pi))u(t - 2\pi)

Using time shift property of Laplace transform:

$$
X(s) = e^{-2\pi s} \mathcal{L} \left[\cos(3t) u(t) \right]
$$

$$
= \frac{se^{-2\pi s}}{s^2 + 9}
$$

ROC is $\mathcal{R}e[s] > 0$. Poles are at $s = \pm 3j$ and zero is at $s = 0$.

Figure 3: Pole-zero plot for Problem 2-a

(b)

$$
y(t) = \int_0^t (t - \tau)^3 \cos(3\tau) d\tau
$$

=
$$
\int_{-\infty}^{\infty} (t - \tau)^3 \cos(3\tau) u(\tau) u(t - \tau) d\tau
$$

=
$$
[t^3 u(t)] * [\cos(3t) u(t)]
$$

Using convolution property of Laplace transform:

$$
Y(s) = \mathcal{L}[t^3 u(t)] \times \mathcal{L}[\cos(3t)u(t)]
$$

Consider term I

$$
\mathcal{L}[t^3 u(t)] = 3!\mathcal{L}\left[\frac{t^3}{3!}u(t)\right] = 3!\frac{1}{s^4} = \frac{6}{s^4}
$$

It has ROC: $Re[s] > 0$.

Consider term II

$$
\mathcal{L}[\cos(3t)u(t)] = \frac{s}{s^2 + 9}
$$

It has ROC: $Re[s] > 0$.

Therefore,

$$
Y(s) = \frac{6}{s^4} \times \frac{s}{s^2 + 9} = \frac{6}{s^3(s^2 + 9)}
$$

and ROC: $\mathcal{R}e[s] > 0$.

There are 5 poles in total. Three poles are at $s = 0$ and two poles are at $s = \pm 3j$. There are no zeros.

Figure 4: Pole-zero plot for Problem 2-b