UCLA DEPARTMENT OF ELECTRICAL ENGINEERING

EE102: SYSTEMS & SIGNALS

Final Examination Date: March 22, 2018, Duration: 3 hours

INSTRUCTIONS:

- The exam has 6 problems and 16 pages.
- The exam is closed-book.
- Three double-sided cheat sheets of A4 size are allowed.
- Calculator is NOT allowed.

Your name:

Student ID:

Problem	a	b	с	d	Score
1	3	3	4		10
2	8	2	2		12
3	6	4	4	4	18
4	6	8			14
5	4	4	4	4	16
6	4	4	6	6	20
Total					90

Table 1: Score Table

Problem 1 (10 pts) State whether the following statements are TRUE or FALSE. Provide a brief explanation for each part.

(a) (3 pts) A system with the following transfer function is time-variant:

$$h(t,\tau) = e^{-2(t-3)}\cos(6t - 3\tau)u(t - 3\tau) \tag{1}$$

TRUE, since it cannot be written as function of $t - \tau$ alone

(b) (3 pts) A system with the following input-output relationship is causal:

$$y(t) = x(t) + \int_{t/2}^{2t} e^{-(t-\sigma)} x(\sigma) d\sigma$$
(2)

FALSE, since input at 2t is required to compute output at t.

(c) (4 pts) If signal x(t) has period T_0 and Fourier series coefficients as follows

$$X_{2} = j\pi,$$

$$X_{-2} = -j\pi,$$

$$X_{0} = 1,$$

$$X_{k} = 0, \text{ for other values of } k,$$
(3)

then x(t) is an odd signal.

FALSE, $X_0 \neq 0$, therefore this signal cannot be odd.

Problem 2 (12 pts) Consider an LTI system S with the input signal

$$x(t) = e^{-4t}u(t-1)$$
(4)

corresponding output signal y(t). We also know that if input $\frac{dx(t)}{dt}$ is applied to the system S, corresponding output is $-4y(t) + e^{-2t}u(t)$.

- (a) (8 pts) Determine the system transfer function H(s) and the impulse response function h(t).
- (b) (2 pts) Sketch pole-zero plot of H(s).
- (c) (2 pts) Determine if the system is BIBO stable or not.

Solution:

(a) We have H(s)X(s) = Y(s) and $sX(s)H(s) = \left[-4Y(s) + \frac{1}{s+2}\right]$. Substituting the first equation into the second, we get

$$sX(s)H(s) = \left[-4X(s)H(s) + \frac{1}{s+2}\right]$$
(5)

$$H(s) = \frac{1}{X(s)(s+4)(s+2)}$$
(6)

We have $X(s) = \mathcal{L}[e^{-4t}u(t-1)] = \frac{e^{-(s+4)}}{s+4}$. Substitute in the above equation to get

$$H(s) = \frac{e^{s+4}}{(s+2)}$$
(7)

$$h(t) = e^4 e^{-2(t+1)} u(t+1) = e^{-2t+2} u(t+1)$$
(8)

- (b) System has a pole at s = -2.
- (c) It is BIBO stable since the pole is on the LHS of the $j\Omega$ axis.

Problem 3 (18 pts) Consider the following real signals

- (a) (6 pts) Compute the Fourier transform of $x_0(t)$.
- (b) (4 pts) Compute the Fourier transform of $x_1(t)$.
- (c) (4 pts) Compute the Fourier transform of $x_2(t)$.
- (d) (4 pts) Compute the Fourier transform of $x_3(t)$.

Hint: Parts (b), (c), and (d), can be computed using part (a). Solution

(a) The Fourier transform of x_0 can be computed as

_

$$X_0(\omega) = \int_0^1 e^{-t(1+j\omega)} dt$$
$$= \left[-\frac{e^{-t(1+j\omega)}}{1+j\omega} \right]_0^1$$
$$= \frac{1-e^{-(1+j\omega)}}{1+j\omega}$$

(b) Since $x_1(t) = x_0(t) + x_0(t+1)$, we have

$$X_1(\omega) = X_0(\omega) + e^{j\omega}X_0(\omega)$$
$$= \frac{1 + e^{j\omega} - e^{-1}(1 + e^{-j\omega})}{1 + j\omega}$$

(c) Since $x_2(t) = x_0(t) + x_0(-t)$, we have

$$X_2(\omega) = X_0(\omega) + X_0(-\omega)$$

= $\frac{1 - e^{-(1+j\omega)}}{1+j\omega} + \frac{1 - e^{-(1-j\omega)}}{1-j\omega}$
= $\frac{2 - 2e^{-1}\cos(\omega) + 2\omega e^{-1}\sin(\omega)}{1+\omega^2}$

(d) Since $x_3(t) = \frac{1}{2}x_0(t) + \frac{1}{2}\cos(10\pi t)x_0(t)$, we have

$$X_{3}(\omega) = \frac{1}{2}X_{0}(\omega) + \frac{1}{4}\left(X_{0}(\omega - 10\pi) + X_{0}(\omega + 10\pi)\right)$$
$$= \frac{1}{2}\frac{1 - e^{-(1+j\omega)}}{1 + j\omega} + \frac{1}{4}\frac{1 - e^{-(1+j(\omega - 10\pi))}}{1 + j(\omega - 10\pi)} + \frac{1}{4}\frac{1 - e^{-(1+j(\omega + 10\pi))}}{1 + j(\omega + 10\pi)}$$

Problem 4 (16 pts)

Consider a square-wave periodic signal x(t) with the following Fourier Series representation

$$x(t) = \frac{A}{2} - \frac{A}{\pi} \sum_{k=1}^{\infty} \frac{\left((-1)^{k} - 1\right)}{k} \sin(k\pi t)$$

The signal is then passed through a parallel system, with the following frequency response for each branch.

- (a) (6 pts) Compute the Fourier transform of x(t).
- (b) (2 pts) Sketch the frequency response $H(\omega)$ of the entire system.
- (c) (4 pts) Compute the Fourier transform of y(t).
- (d) (4 pts) Compute the exponential Fourier series coefficients Y_k , and then find the power of y(t) using Parseval's theorem.

Solution:

(a) Since $b_k = \frac{A}{2\pi k} ((-1)^k - 1)$, and $b_k = \text{Im}\{X_k\}$, then

$$X_k = j \frac{A}{2\pi k} \left((-1)^k - 1 \right)$$

Also, $X_0 = \frac{A}{2}$. Using the relation between the Fourier series and Fourier transform, we get

$$X(\omega) = A\pi\delta(\omega) + jA\sum_{k=-\infty}^{\infty} \frac{(-1)^k - 1}{k}\delta(\omega - k\pi)$$
(9)

where we have used the fact that $\omega_0 = \pi$.

(b) The system's frequency response is $H(\omega) = H_1(\omega) + H_2(\omega)$, which is shown below

(c) The frequency response will pass the DC component of the input, and the components with frequencies between -1.5π and 1.5π , between 3.5π and 4.5π , and between -4.5π and -3.5π . Since $X(\omega)$ is zero at even multiples of π , the output will only have a DC term and two terms at $\pm \pi$. Thus,

$$Y(\omega) = A\pi\delta(\omega) - 2jA\delta(\omega - \pi) + 2jA\delta(\omega + \pi)$$

(d) From the relation of the Fourier series and the Fourier transform of periodic signals, we have $Y_k = \frac{1}{2\pi}Y(k\omega_0)$. Thus,

$$Y_k = \begin{cases} \frac{A}{2}, & k = 0\\ -j\frac{A}{\pi}, & k = 1\\ j\frac{A}{\pi}, & k = -1 \end{cases}$$

Using Parseval's theorem to compute the power, we get

$$\sum_{k=-\infty}^{\infty} |Y_k|^2 = \left(\frac{A}{2}\right)^2 + 2\left(\frac{A}{\pi}\right)^2$$
$$= A^2 \left(\frac{1}{4} + \frac{2}{\pi^2}\right)$$
$$\approx 0.45A^2$$

Problem 5 (16 pts) Consider LTI systems S_1 and S_2 arranged as shown in the figure below:

The impulse response function for S_1 is:

$$h_1(t) = \delta(t-1),\tag{10}$$

and the input-output relationship for S_2 is:

$$w(t) = \frac{d^2 z(t)}{dt^2}.$$
 (11)

The following input is applied to the cascaded system

$$x(t) = \cos\left(\frac{\pi}{2}t\right) + \sin\left(\pi t\right).$$
(12)

- (a) (4 pts) Compute Fourier series coefficients Y_k of y(t).
- (b) (4 pts) Plot magnitude and phase spectra of Y_k . Clearly label axes in the plot.
- (c) (4 pts) Compute Fourier series coefficients Z_k of z(t).
- (d) (4 pts) Plot magnitude and phase spectra of Z_k . Clearly label axes in the plot. *Hint:* $\cos(\pi/4) = \sin(\pi/4) = \frac{1}{\sqrt{2}}, \ \cos(\pi/2) = 0, \ \sin(\pi/2) = 1,$ $\cos(-3\pi/4) = \frac{-1}{\sqrt{2}}, \ \sin(-3\pi/4) = \frac{-1}{\sqrt{2}}, \ Use \ approximation \ 0.5\sqrt{2} \approx 0.7$

Solution For $x(t) = 0.5e^{j\frac{\pi}{2}t} + 0.5e^{-j\frac{\pi}{2}t} - 0.5je^{j\pi t} + 0.5je^{-j\pi t}$, $\Omega_0 = \pi/2$. Therefore, FS coefficients of x(t) are

$$X_1 = 0.5, X_{-1} = 0.5, X_2 = -0.5j, X_{-2} = 0.5j.$$
(13)

(a) y(t) = x(t) + x(t-1). Therefore, FS coefficients are

$$Y_k = X_k + X_k(e^{-jk\Omega_0}) = X_k(1 + e^{-jk\pi/2})$$
(14)

$$Y_1 = 0.5(1 - j) = 0.7 \angle -\pi/4 \tag{15}$$

$$Y_{-1} = 0.5(1+j) = 0.7 \angle \pi/4 \tag{16}$$

$$Y_2 = 0$$
 (17)

$$Y_{-2} = 0$$
 (18)

(b) The graph is shown below:

(c)
$$z(t) = y(t) - \frac{d^2 z(t)}{dt^2}$$
. Therefore,
 $Z_t = V_t - (-k^2 \Omega^2) Z_t$

$$Z_{k} = Y_{k} - (-k^{2}\Omega_{0}^{2})Z_{k}$$
(19)
$$Z_{k} = \frac{Y_{k}}{(1-k^{2}\pi^{2})}$$
(20)

$$Z_k = \frac{\pi}{\left(1 - k^2 \frac{\pi^2}{4}\right)} \tag{20}$$

$$Z_1 = \frac{0.7}{\left|\left(1 - \frac{\pi^2}{4}\right)\right|} \angle 3\pi/4 \tag{21}$$

$$Z_{-1} = \frac{0.7}{\left|\left(1 - \frac{\pi^2}{4}\right)\right|} \angle -3\pi/4 \tag{22}$$

$$Z_2 = 0 \tag{23}$$

$$Z_{-2} = 0$$
 (24)

(d) The graph is shown below:

Problem 6 (20 pts)

Consider the time-domain real signal x(t) with a Fourier Transform X(w), where x(t) is shown below.

- (a) (4 pts) Find X(0) and $\int_{-\infty}^{\infty} X(\omega) d\omega$.
- (b) (4 pts) Compute $\int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$.
- (c) (6 pts) Compute $\int_{-\infty}^{\infty} X(\omega)Y(\omega)d\omega$, where $Y(\omega) = \frac{2\sin(\omega)}{\omega}e^{j2\omega}$. Hint: For any real signals f(t) and g(t), we have

$$\int_{-\infty}^{\infty} f(t)g(-t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)G(\omega)d\omega$$

(d) (6 pts) Sketch the inverse Fourier transform of $\text{Real}\{X(\omega)\}$.

Note: You can answer all parts without explicitly evaluating X(w). Solution

(a) Since $X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$, then

$$X(0) = \int_{-\infty}^{\infty} x(t)dt$$
$$= 6$$

Since $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$, then

$$\int_{-\infty}^{\infty} X(\omega) d\omega = 2\pi x(0)$$
$$= 4\pi$$

(b) Using Parseval's theorem $\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$, and thus

$$\int_{-\infty}^{\infty} |X(\omega)|^2 d\omega = 2\pi \int_{-\infty}^{\infty} |x(t)|^2 dt$$
$$= 2\pi (10)$$
$$= 20\pi$$

(c) Let $Z(\omega) = 2\frac{\sin(\omega)}{\omega}$, then the inverse Fourier transform is z(t) = rect(t), i.e., a rectangular function from -1 to 1. Since $Y(\omega) = Z(\omega)e^{2j\omega}$, then y(t) = z(t+2) = rect(t+2), i.e., a rectangular function from -3 to -1. In other words, $\int_{-\infty}^{\infty} x(t)y(-t)dt$ is the area of the product of the following two functions

That is, $\int_{-\infty}^{\infty} x(t)y(-t)dt = 3$. Thus,

$$\int_{-\infty}^{\infty} X(\omega)Y(\omega)d\omega = 2\pi \int_{-\infty}^{\infty} x(t)y(-t)dt = 6\pi$$

Alternatively, we can also show that $\int_{-\infty}^{\infty} X(\omega)Y(\omega)d\omega$ is actually $2\pi r(0)$, where r(t) = x(t) * y(t). That is, r(0) is the convolution of x(t) and y(t) at t = 0, which can be shown to be r(0) = 3.

(d) (6 pts) Since x(t) is real, then the inverse Fourier transform of $\text{Real}\{X(\omega)\}$ is the even part of x(t), i.e., $\mathcal{F}^{-1}\{\text{Real}\{X(\omega)\}\} = \frac{x(t)+x(-t)}{2}$. The sketch is provided below.

