UCLA DEPARTMENT OF ELECTRICAL ENGINEERING

EE102: SYSTEMS & SIGNALS

Final Examination Date: March 22, 2018, Duration: 3 hours

INSTRUCTIONS:

- The exam has 6 problems and 16 pages.
- The exam is closed-book.
- Three double-sided cheat sheets of A4 size are allowed.
- Calculator is NOT allowed.

Your name:-

Student ID:-

Table 1: Score Table

Problem 1 (10 pts) State whether the following statements are TRUE or FALSE. Provide a brief explanation for each part.

(a) (3 pts) A system with the following transfer function is time-variant:

$$
h(t,\tau) = e^{-2(t-3)}\cos(6t - 3\tau)u(t - 3\tau)
$$
\n(1)

TRUE, since it cannot be written as function of $t - \tau$ alone

(b) (3 pts) A system with the following input-output relationship is causal:

$$
y(t) = x(t) + \int_{t/2}^{2t} e^{-(t-\sigma)} x(\sigma) d\sigma \tag{2}
$$

FALSE, since input at $2t$ is required to compute output at t .

(c) (4 pts) If signal $x(t)$ has period T_0 and Fourier series coefficients as follows

$$
X_2 = j\pi,
$$

\n
$$
X_{-2} = -j\pi,
$$

\n
$$
X_0 = 1,
$$

\n
$$
X_k = 0
$$
, for other values of k, (3)

then $x(t)$ is an odd signal.

FALSE, $X_0 \neq 0$, therefore this signal cannot be odd.

Problem 2 (12 pts) Consider an LTI system S with the input signal

$$
x(t) = e^{-4t}u(t-1)
$$
 (4)

corresponding output signal $y(t)$. We also know that if input $\frac{dx(t)}{dt}$ is applied to the system S, corresponding output is $-4y(t) + e^{-2t}u(t)$.

- (a) (8 pts) Determine the system transfer function $H(s)$ and the impulse response function $h(t)$.
- (b) (2 pts) Sketch pole-zero plot of $H(s)$.
- (c) (2 pts) Determine if the system is BIBO stable or not.

Solution:

(a) We have $H(s)X(s) = Y(s)$ and $sX(s)H(s) = \frac{-4Y(s) + \frac{1}{s+2}}{s+2}$. Substituting the first equation into the second, we get

$$
sX(s)H(s) = \left[-4X(s)H(s) + \frac{1}{s+2}\right]
$$
\n⁽⁵⁾

$$
H(s) = \frac{1}{X(s)(s+4)(s+2)}
$$
(6)

We have $X(s) = \mathcal{L}[e^{-4t}u(t-1)] = \frac{e^{-(s+4)}}{s+4}$. Substitute in the above equation to get

$$
H(s) = \frac{e^{s+4}}{(s+2)}
$$
 (7)

$$
h(t) = e^4 e^{-2(t+1)} u(t+1) = e^{-2t+2} u(t+1)
$$
\n(8)

- (b) System has a pole at $s = -2$.
- (c) It is BIBO stable since the pole is on the LHS of the $j\Omega$ axis.

Problem 3 (18 pts) Consider the following real signals

- (a) (6 pts) Compute the Fourier transform of $x_0(t)$.
- (b) (4 pts) Compute the Fourier transform of $x_1(t)$.
- (c) (4 pts) Compute the Fourier transform of $x_2(t)$.
- (d) (4 pts) Compute the Fourier transform of $x_3(t)$.

Hint: Parts (b) , (c) , and (d) , can be computed using part (a) . Solution

(a) The Fourier transform of x_0 can be computed as

$$
X_0(\omega) = \int_0^1 e^{-t(1+j\omega)} dt
$$

=
$$
\left[-\frac{e^{-t(1+j\omega)}}{1+j\omega} \right]_0^1
$$

=
$$
\frac{1 - e^{-(1+j\omega)}}{1+j\omega}
$$

(b) Since $x_1(t) = x_0(t) + x_0(t+1)$, we have

$$
X_1(\omega) = X_0(\omega) + e^{j\omega} X_0(\omega)
$$

=
$$
\frac{1 + e^{j\omega} - e^{-1}(1 + e^{-j\omega})}{1 + j\omega}
$$

(c) Since $x_2(t) = x_0(t) + x_0(-t)$, we have

$$
X_2(\omega) = X_0(\omega) + X_0(-\omega)
$$

= $\frac{1 - e^{-(1+j\omega)}}{1 + j\omega} + \frac{1 - e^{-(1-j\omega)}}{1 - j\omega}$
= $\frac{2 - 2e^{-1}\cos(\omega) + 2\omega e^{-1}\sin(\omega)}{1 + \omega^2}$

(d) Since $x_3(t) = \frac{1}{2}x_0(t) + \frac{1}{2}\cos(10\pi t)x_0(t)$, we have

$$
X_3(\omega) = \frac{1}{2}X_0(\omega) + \frac{1}{4}(X_0(\omega - 10\pi) + X_0(\omega + 10\pi))
$$

= $\frac{1}{2}\frac{1 - e^{-(1+j\omega)}}{1 + j\omega} + \frac{1}{4}\frac{1 - e^{-(1+j(\omega - 10\pi))}}{1 + j(\omega - 10\pi)} + \frac{1}{4}\frac{1 - e^{-(1+j(\omega + 10\pi))}}{1 + j(\omega + 10\pi)}$

Problem 4 (16 pts)

Consider a square-wave periodic signal $x(t)$ with the following Fourier Series representation

$$
x(t) = \frac{A}{2} - \frac{A}{\pi} \sum_{k=1}^{\infty} \frac{((-1)^k - 1)}{k} \sin(k\pi t)
$$

The signal is then passed through a parallel system, with the following frequency response for each branch.

- (a) (6 pts) Compute the Fourier transform of $x(t)$.
- (b) (2 pts) Sketch the frequency response $H(\omega)$ of the entire system.
- (c) (4 pts) Compute the Fourier transform of $y(t)$.
- (d) (4 pts) Compute the exponential Fourier series coefficients Y_k , and then find the power of $y(t)$ using Parseval's theorem.

Solution:

(a) Since $b_k = \frac{A}{2\pi k} ((-1)^k - 1)$, and $b_k = \text{Im}\{X_k\}$, then

$$
X_k = j\frac{A}{2\pi k} \left((-1)^k - 1 \right)
$$

Also, $X_0 = \frac{A}{2}$ $\frac{A}{2}$. Using the relation between the Fourier series and Fourier transform, we get

$$
X(\omega) = A\pi\delta(\omega) + jA \sum_{k=-\infty}^{\infty} \frac{(-1)^k - 1}{k} \delta(\omega - k\pi)
$$
 (9)

where we have used the fact that $\omega_0 = \pi$.

(b) The system's frequency response is $H(\omega) = H_1(\omega) + H_2(\omega)$, which is shown below

(c) The frequency response will pass the DC component of the input, and the components with frequencies between -1.5π and 1.5π , between 3.5π and 4.5π, and between -4.5π and -3.5π . Since $X(\omega)$ is zero at even multiples of π , the output will only have a DC term and two terms at $\pm\pi$. Thus,

$$
Y(\omega) = A\pi\delta(\omega) - 2jA\delta(\omega - \pi) + 2jA\delta(\omega + \pi)
$$

(d) From the relation of the Fourier series and the Fourier transform of periodic signals, we have $Y_k = \frac{1}{2i}$ $\frac{1}{2\pi}Y(k\omega_0)$. Thus,

$$
Y_k = \begin{cases} \frac{A}{2}, & k = 0\\ -j\frac{A}{\pi}, & k = 1\\ j\frac{A}{\pi}, & k = -1 \end{cases}
$$

Using Parseval's theorem to compute the power, we get

$$
\sum_{k=-\infty}^{\infty} |Y_k|^2 = \left(\frac{A}{2}\right)^2 + 2\left(\frac{A}{\pi}\right)^2
$$

$$
= A^2 \left(\frac{1}{4} + \frac{2}{\pi^2}\right)
$$

$$
\approx 0.45A^2
$$

Problem 5 (16 pts) Consider LTI systems S_1 and S_2 arranged as shown in the figure below:

The impulse response function for S_1 is:

$$
h_1(t) = \delta(t - 1),\tag{10}
$$

and the input-output relationship for S_2 is:

$$
w(t) = \frac{d^2z(t)}{dt^2}.
$$
\n⁽¹¹⁾

The following input is applied to the cascaded system

$$
x(t) = \cos\left(\frac{\pi}{2}t\right) + \sin\left(\pi t\right). \tag{12}
$$

- (a) (4 pts) Compute Fourier series coefficients Y_k of $y(t)$.
- (b) (4 pts) Plot magnitude and phase spectra of Y_k . Clearly label axes in the plot.
- (c) (4 pts) Compute Fourier series coefficients Z_k of $z(t)$.
- (d) (4 pts) Plot magnitude and phase spectra of Z_k . Clearly label axes in the plot. Hint: $\cos(\pi/4) = \sin(\pi/4) = \frac{1}{\sqrt{2}}$ \overline{z}_2 , $\cos(\pi/2) = 0$, $\sin(\pi/2) = 1$, cos($-3\pi/4$) = $\frac{-1}{\sqrt{2}}$, sin($-3\pi/4$) = $\frac{-1}{\sqrt{2}}$, Use approximation 0.5 √ $2 \approx 0.7$

Solution For $x(t) = 0.5e^{j\frac{\pi}{2}t} + 0.5e^{-j\frac{\pi}{2}t} - 0.5je^{j\pi t} + 0.5je^{-j\pi t}$, $\Omega_0 = \pi/2$. Therefore, FS coefficients of $x(t)$ are

$$
X_1 = 0.5, X_{-1} = 0.5, X_2 = -0.5j, X_{-2} = 0.5j.
$$
\n
$$
(13)
$$

(a) $y(t) = x(t) + x(t-1)$. Therefore, FS coefficients are

$$
Y_k = X_k + X_k(e^{-jk\Omega_0}) = X_k(1 + e^{-jk\pi/2})
$$
\n(14)

$$
Y_1 = 0.5(1 - j) = 0.7\angle -\pi/4\tag{15}
$$

$$
Y_{-1} = 0.5(1+j) = 0.7\angle\pi/4\tag{16}
$$

$$
Y_2 = 0 \tag{17}
$$

$$
Y_{-2} = 0 \tag{18}
$$

(b) The graph is shown below:

(c)
$$
z(t) = y(t) - \frac{d^2 z(t)}{dt^2}
$$
. Therefore,

$$
Z_k = Y_k - (-k^2 \Omega_0^2) Z_k
$$

$$
Z_k = Y_k - (-k^2 \Omega_0^2) Z_k
$$
\n
$$
Z_k = \frac{Y_k}{(20)}
$$
\n(19)

$$
Z_k = \frac{1 - k}{\left(1 - k^2 \frac{\pi^2}{4}\right)}\tag{20}
$$

$$
Z_1 = \frac{0.7}{|\left(1 - \frac{\pi^2}{4}\right)|} \angle 3\pi/4\tag{21}
$$

$$
Z_{-1} = \frac{0.7}{|\left(1 - \frac{\pi^2}{4}\right)|} \angle -3\pi/4\tag{22}
$$

$$
Z_2 = 0 \tag{23}
$$

$$
Z_{-2} = 0 \tag{24}
$$

(d) The graph is shown below:

Problem 6 (20 pts)

Consider the time-domain real signal $x(t)$ with a Fourier Transform $X(w)$, where $x(t)$ is shown below.

- (a) (4 pts) Find $X(0)$ and $\int_{-\infty}^{\infty} X(\omega) d\omega$.
- (b) (4 pts) Compute $\int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$.
- (c) (6 pts) Compute $\int_{-\infty}^{\infty} X(\omega) Y(\omega) d\omega$, where $Y(\omega) = \frac{2 \sin(\omega)}{\omega} e^{j2\omega}$. Hint: For any real signals $f(t)$ and $g(t)$, we have

$$
\int_{-\infty}^{\infty} f(t)g(-t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)G(\omega)d\omega
$$

(d) (6 pts) Sketch the inverse Fourier transform of Real $\{X(\omega)\}.$

Note: You can answer all parts without explicitly evaluating $X(w)$. Solution

(a) Since $X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$, then

$$
X(0) = \int_{-\infty}^{\infty} x(t)dt
$$

= 6

Since $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$, then

$$
\int_{-\infty}^{\infty} X(\omega) d\omega = 2\pi x(0)
$$

$$
= 4\pi
$$

(b) Using Parseval's theorem $\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2t}$ $\frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$, and thus

$$
\int_{-\infty}^{\infty} |X(\omega)|^2 d\omega = 2\pi \int_{-\infty}^{\infty} |x(t)|^2 dt
$$

$$
= 2\pi (10)
$$

$$
= 20\pi
$$

(c) Let $Z(\omega) = 2 \frac{\sin(\omega)}{\omega}$, then the inverse Fourier transform is $z(t) = rect(t)$, i.e., a rectangular function from -1 to 1. Since $Y(\omega) = Z(\omega)e^{2j\omega}$, then $y(t) = z(t + 2) = rect(t + 2)$, i.e., a rectangular function from -3 to −1. In other words, $\int_{-\infty}^{\infty} x(t)y(-t)dt$ is the area of the product of the following two functions

That is, $\int_{-\infty}^{\infty} x(t)y(-t)dt = 3$. Thus,

$$
\int_{-\infty}^{\infty} X(\omega) Y(\omega) d\omega = 2\pi \int_{-\infty}^{\infty} x(t) y(-t) dt = 6\pi
$$

Alternatively, we can also show that $\int_{-\infty}^{\infty} X(\omega) Y(\omega) d\omega$ is actually $2\pi r(0)$, where $r(t) = x(t) * y(t)$. That is, $r(0)$ is the convolution of $x(t)$ and $y(t)$ at $t = 0$, which can be shown to be $r(0) = 3$.

(d) (6 pts) Since $x(t)$ is real, then the inverse Fourier transform of Real $\{X(\omega)\}$ is the even part of $x(t)$, i.e., \mathcal{F}^{-1} {Real{ $X(\omega)$ }} = $\frac{x(t)+x(-t)}{2}$ $\frac{2^{-(x-t)}}{2}$. The sketch is provided below.

