UCLA DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 102: SYSTEMS & SIGNALS

Midterm Examination II February 23, 2021 Duration: 1 hr 50 min. (+15 min. for Gradescope submission)

INSTRUCTIONS:

- The exam has 5 problems and 17 pages.
- The exam is open-book and open-notes.
- Calculator/MATLAB allowed.
- Show all of your work! No credit given for answers without math steps shown and/or an explanation.
- NO LATE SUBMISSIONS ALLOWED ON GRADESCOPE.

Your name:

Student ID:—

Table 1: Score Table						
Problem	a	b	c	d	е	Score
1	10					10
2	10	3	2			15
3	4	4	4	4	4	20
4	1	3	2	10	4	20
5	6	4	6	4	5	25
Total						90

Table 3.1 One-Sided Laplace Transforms				
	Function of Time	Function of s, ROC		
1.	$\delta(t)$	1, whole s-plane		
2.	u(t)	$\frac{1}{s}$, $\mathcal{R}e[s] > 0$		
З.	r(t)	$rac{1}{s^2}$, $\mathcal{R}e[s] > 0$		
4.	$e^{-at}u(t), \ a>0$	$\frac{1}{s+a}$, $\mathcal{R}e[s] > -a$		
5.	$\cos(\Omega_0 t)u(t)$	$rac{s}{s^2+\Omega_0^2}$, $\mathcal{R}e[s] > 0$		
6.	$\sin(\Omega_0 t)u(t)$	$rac{\Omega_0}{s^2+\Omega_0^2}$, $\mathcal{R}e[s] > 0$		
7.	$e^{-at}\cos(\Omega_0 t)u(t),\ a>0$	$rac{s+a}{(s+a)^2+\Omega_0^2}$, $\mathcal{R}e[s]>-a$		
8.	$e^{-at}\sin(\Omega_0 t)u(t),\ a>0$	$rac{\Omega_0}{(s+a)^2+\Omega_0^2}$, $\mathcal{R}e[s] > -a$		
9.	$2A \ e^{-at} \cos(\Omega_0 t + \theta) u(t), \ a > 0$	$\frac{A \angle \theta}{s+a-j\Omega_0} + \frac{A \angle -\theta}{s+a+j\Omega_0}$, $\mathcal{R}e[s] > -a$		
10.	$\frac{1}{(N-1)!} t^{N-1} u(t)$	$rac{1}{s^N}$ N an integer, $\mathcal{R}e[s] > 0$		
11.	$\frac{1}{(N-1)!} t^{N-1} e^{-at} u(t)$	$\frac{1}{(s+a)^N}$ N an integer, $\mathcal{R}e[s] > -a$		
12.	$\frac{2A}{(N-1)!} t^{N-1} e^{-at} \cos(\Omega_0 t + \theta) u(t)$	$rac{A \angle \theta}{(s+a-j\Omega_0)^N} + rac{A \angle -\theta}{(s+a+j\Omega_0)^N}$, $\mathcal{R}e[s] > -a$		

Table 3.2 Basic Properties of One-Sided Laplace Transforms			
Causal functions and constants	$\alpha f(t), \ \beta g(t)$	$\alpha F(s), \ \beta G(s)$	
Linearity	$\alpha f(t) + \beta g(t)$	$\alpha F(s) + \beta G(s)$	
Time shifting	$f(t - \alpha)$	$e^{-\alpha s}F(s)$	
Frequency shifting	$e^{\alpha t}f(t)$	$F(s-\alpha)$	
Multiplication by t	t f(t)	$-\frac{dF(s)}{ds}$	
Derivative	$\frac{df(t)}{dt}$	sF(s) - f(0-)	
Second derivative	$\frac{d^2 f(t)}{dt^2}$	$s^2 F(s) - sf(0-) - f^{(1)}(0)$	
Integral	$\int_{0-}^{t} f(t')dt$	$\frac{F(s)}{s}$	
Expansion/contraction	$f(\alpha t) \ \alpha \neq 0$	$\frac{1}{ \alpha }F\left(\frac{s}{\alpha}\right)$	
Initial value	$f(0+) = \lim_{s \to \infty} sF(s)$		
Final value	$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$		

Simple Real Poles

If $X(s)$ is a proper rational function		
$X(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{\prod_k (s - p_k)}$	(3.21)	

Problem 1 (10 pts)

Solve the following linear differential equation using the Laplace transform. Show your work and label any properties or identities you use.

$$u(t) + r(t) = x(t) + 3\frac{dx(t)}{dt} + 2\frac{d^2x(t)}{dt^2}, \quad 0 < t < \infty$$
$$x(0^-) = 0, \quad x'(0^-) = 1$$

Note: u(t) is the unit step function and r(t) = tu(t) (i.e. the unit ramp function).

Hint: You may find it easier to avoid fully combining fractions when finding X(s).

Problem 2 (15 pts)

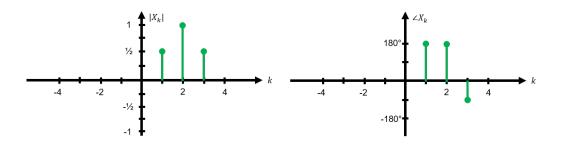
A causal LTI system S has the following input-output relationship:

$$y(t) = \int_0^t e^{-3\tau} \sin\left(2(\tau - 1)\right) \left(\frac{dx(t - \tau)}{d(t - \tau)}\right) u(\tau - 1)d\tau, \quad x(0) = 0, \quad 0 < t < \infty$$

- (a) (10 pts) Find the transfer function H(s) for the system S. Show your work and label any properties or identities you use.
- (b) (3 pts) Plot the pole-zero plot for the transfer function H(s). Label your plot clearly.
- (c) (2 pts) Is the system BIBO stable? Justify your answer.

Problem 3 (20 pts)

Suppose Gene was in a lab measuring a real, periodic signal x(t). He created phase and magnitude spectra plots for the signal, but, as shown below, the spectra for only $k \ge 1$ were saved!



Note that a separate instrument saved 0.5 as the average value of x(t) and $T_0 = 1$ as the period. Also, measurements for k > 3 are assumed to be 0.

- (a) (4 pts) Let's help Gene out. Fill in the missing spectra and label the values clearly. Justify your answers.
- (b) (4 pts) Find the trigonometric Fourier series coefficients, i.e. find coefficients a_k and b_k such that:

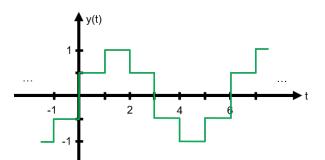
$$x(t) = X_0 + 2\sum_{k=1}^{\infty} a_k \cos(k\Omega_0 t) - 2\sum_{k=1}^{\infty} b_k \sin(k\Omega_0 t).$$

Simplify your results and show your work.

- (c) (4 pts) Write an expression for x(t). Your expression should not include any complex exponential terms. Show your work and/or justify your answer.
- (d) (4 pts) Was the signal x(t) even, odd, or neither? Justify your answer.
- (e) (4 pts) Find the power of the signal x(t). Show your work.

Problem 4 (20 pts)

Suppose we want to build a sine wave generator, but our device is only able to give 4 total output amplitudes. A capture of the periodic output y(t) of our generator, with period $T_0 = 6$ seconds, is shown below:



- (a) (1 pt) What is the fundamental frequency of the output y(t)?
- (b) (3 pts) Our target sine wave $\hat{y}(t)$ has the same frequency as y(t). Find the complex (exponential) Fourier series coefficients for $\hat{y}(t)$? Show your work.
- (c) (2 pts) Plot the phase and magnitude spectra of $\hat{y}(t)$.
- (d) (10 pts) Find the complex (exponential) Fourier series coefficients for y(t). You may solve using the Fourier series definition and/or the Laplace transform method. Simplify your coefficients so they do NOT include any complex exponential terms. Show your work.
- (e) (4 pts) Plot the phase and magnitude spectra of y(t) for **only** X_1, X_0, X_{-1} . How do they compare to the pure sine wave in (c)?

Problem 5 (25 pts)

Consider a cascade of two systems $S_{12} = S_1 S_2$.

$x(t)$ S_1	$y(t)$ S_2	z(t)
--------------	--------------	------

The first system S_1 is described by:

$$y(t) = \int_0^t x(\sigma) d\sigma$$

where x(t) and y(t) are the input and the output, respectively. The second system is described by:

$$z(t) = 2y(t) + 10 \int_0^t y(\sigma) d\sigma$$

where y(t) and z(t) and the input and the output, respectively. The input signal to the system x(t) is periodic with $T_0 = 1$. Each period of x(t) is represented by the following equation:

$$x(t) = e^{-4t}, \quad 0 \le t < 1$$

(a) (6 pts) Find the complex (exponential) Fourier series of the input signal x(t). Show your work. Simplify any complex exponentials. Your final answer should be of the form:

$$\frac{A}{B+jC}$$

Note A, B, and C should be entirely real and can be functions of k.

(b) (4 pts) Find the phase and magnitude of X_1 and X_{-1} . Show your work. You do not need to simplify any inverse trigonometric functions. Note that the form in part (a) can be rewritten as:

$$\left(\frac{AB}{B^2 - C^2}\right) - j\left(\frac{AC}{B^2 - C^2}\right)$$

- (c) (6 pts) Find the transfer functions $H_1(s)$ and $H_2(s)$ of S_1 and S_2 respectively. Show your work.
- (d) (4 pts) Find the transfer function $H_{12}(s)$ of the cascaded system S_{12} . Show your work.
- (e) (5 pts) Find the complex (exponential) Fourier series coefficients of the output Z_k .