UCLA DEPARTMENT OF ELECTRICAL ENGINEERING

ECE102: SYSTEMS & SIGNALS

Midterm Examination February 25, 2020 Duration: 1 hr 50 mins.

INSTRUCTIONS:

- The exam has 5 problems and 13 pages.
- The exam are closed-book.
- Two cheat sheets of A4 size is allowed.
- Calculator is NOT allowed.
- Write your discussion session in the top-right corner. $\nearrow \nearrow$

Your name:———	 	 	
Student ID:	 	 	

Problem	a	b	с	d	e	Score
1	10	10				20
2	5	5	10			20
3	5	10	5			20
4	15					15
5	5	10	10			25
Total						100

Table	1:	Score	Table

Problem 1 (20 pts)

Find the Laplace transforms and ROC of the following signals

(a) (10 pts) $x_1(t) = (t-2)e^{-3t+6}\cos(4t-8)u(t-2)$ (b) (10 pts) $x_2(t) = \int_0^t \sin^2(t-\tau)\cos^2(\tau)d\tau$

Solution:

(a)

$$\mathcal{L}\left\{e^{-3t}\cos(4t)u(t)\right\} = \frac{s+3}{(s+3)^2+4^2}, \mathcal{R}\left\{s\right\} > -3$$

$$\mathcal{L}\left\{te^{-3t}\cos(4t)u(t)\right\} = -\frac{1(s^2 + 6s + 25) - (2s + 6)(s + 3)}{(s^2 + 6s + 25)^2}$$
$$= \frac{s^2 + 6s - 7}{(s^2 + 6s + 25)^2}$$

$$\mathcal{L}\left\{(t-2)e^{-3(t-2)}\cos(4(t-2))u(t-2)\right\} = \frac{e^{-2s}(s^2+6s-7)}{(s^2+6s+25)^2}, \mathcal{R}\{s\} > -3$$
(b)

$$\int_{0}^{t} \sin^{2}(t-\tau) \cos^{2}(\tau) d\tau$$

=
$$\int_{-\infty}^{\infty} \sin^{2}(t-\tau) u(t-\tau) \cos^{2}(\tau) u(\tau) d\tau$$

=
$$\int_{-\infty}^{\infty} \frac{1 - \cos(2(t-\tau))}{2} \frac{1 + \cos(2\tau)}{2} d\tau$$

=
$$\frac{1 - \cos(2t)}{2} u(t) * \frac{1 + \cos(2t)}{2} u(t)$$

$$\mathcal{L}\left\{\frac{1-\cos(2t)}{2}u(t)\right\} = \frac{1}{2}(\frac{1}{s} - \frac{s}{s^2 + 2^2}), \mathcal{R}\{s\} > 0$$

$$\mathcal{L}\left\{\int_{0}^{t} \sin^{2}(t-\tau) \cos^{2}(\tau) d\tau\right\}$$

= $\frac{1}{2}(\frac{1}{s} - \frac{s}{s^{2} + 2^{2}}) \times \frac{1}{2}(\frac{1}{s} + \frac{s}{s^{2} + 2^{2}})$
= $\frac{2s^{2} + 4}{s^{2}(s^{2} + 4)^{2}}, \mathcal{R}\{s\} > 0$

Problem 2 (20 pts)

The input-output relationship for an LTI system is given by the following differential equation

$$3\frac{d^2y(t)}{dt^2} + 19\frac{dy(t)}{dt} + 20y(t) = 2\frac{dx(t)}{dt} - x(t), t \ge 0$$

with initial conditions y'(0) = y(0) = 0, x(0) = 0.

- (a) (5 pts) Find the transfer function H(s), and determine whether the system is BIBO stable or not.
- (b) (5 pts) Find impulse response function h(t).
- (c) (10 pts) Find the output y(t) if the input is $x(t) = e^{\frac{1}{2}(t-3)}u(t-3)$.

Solution:

(a) Take LT of both sides to get

$$3s^{2}Y(s) + 19Y(s) + 20Y(s) = 2sX(s) - X(s),$$
$$H(s) = \frac{Y(s)}{X(s)} = \frac{2s - 1}{3s^{2} + 19s + 20} = \frac{2s - 1}{(3s + 4)(s + 5)}$$

The poles are s = -4/3, -5, so the system is BIBO stable.

(b)

$$H(s) = \frac{2s - 1}{3s^2 + 19s + 20}$$
$$= \frac{-1}{3s + 4} + \frac{1}{s + 5}$$

Take inverse LT to get

$$h(t) = \frac{-1}{3}e^{-\frac{4}{3}}u(t) + e^{-5t}u(t)$$

(c) Let $x_1(t) = e^{\frac{1}{2}t}u(t)$ then $X_1(s) = \frac{1}{s-1/2}$. Since $x(t) = x_1(t-3)$, we have using time shift property of LT

$$X(s) = \frac{2e^{-3s}}{2s-1}$$
$$Y(s) = H(s)X(s) = \frac{2s-1}{3s^2+19s+20}\frac{2e^{-3s}}{2s-1} = \frac{2e^{-3s}}{3s^2+19s+20}$$

Let $y_1(t) = \mathcal{L}^{-1} \frac{2}{3s^2 + 19s + 20} = \mathcal{L}^{-1} \frac{2}{11} (\frac{3}{3s + 4} - \frac{1}{s + 5}) = \frac{2}{11} e^{-\frac{4}{3}t} u(t) - \frac{2}{11} e^{-5t} u(t)$. Then, using the time-shift property again we get

$$y(t) = y_1(t-3) = \frac{2}{11}e^{-\frac{4}{3}(t-3)}u(t-3) - \frac{2}{11}e^{-5(t-3)}u(t-3)$$

Problem 3 (20 pts)

Consider the following periodic signal x(t). For -1 < t < 1, the mathe-

matical expression of x(t) is

$$x(t) = \begin{cases} -t, & -1 < t < 0 \\ t, & 0 \le t < 1 \end{cases}$$

- (a) (5 pts) Find the Fourier series coefficients X_k .
- (b) (10 pts) Show that if the Fourier series coefficients of a periodic signal a(t) are A_k and $b(t) = \frac{da(t)}{dt}$, then the Fourier series coefficients of b(t), B_k , are

$$B_k = jk\omega \times A_k, \quad \omega = \frac{2\pi}{T}$$

(c) (5 pts) Use the property in (b) to find the Fourier series coefficients of the periodic signal y(t), where the period of y(t) is 2. For -1 < t < 1, the mathematical expression of y(t) is

$$y(t) = \begin{cases} -\frac{1}{2}t^2, & -1 < t < 0\\ \frac{1}{2}t^2, & 0 \le t < 1 \end{cases}$$

Solution: $T = 2, \omega = \frac{2\pi}{T} = \pi$ a)

The signal can be expressed in another way. Consider time interval 0 < t < 2. In this interval, we define $x_1(t)$ to be

$$x_1(t) = r(t) - 2r(t-1) + r(t-2), \quad 0 < t < 2$$

Then $X_k = \frac{1}{T} \int_0^T x(t) e^{-jk\omega t} dt = \frac{1}{T} \int_0^2 x_1(t) e^{-jk\omega t} dt = \frac{1}{T} X_1(s = jk\omega)$ By using the Laplace transform table, $X_1(s) = \frac{1}{s^2} (1 - 2e^{-s} + e^{-2s})$. So,

$$X_{k} = \frac{1}{2(jk\pi)^{2}}(1 - 2e^{-jk\pi} + e^{-jk2\pi})$$
$$= \frac{2(-1)^{k} - 2}{2k^{2}\pi^{2}}$$
$$= \frac{(-1)^{k} - 1}{k^{2}\pi^{2}}, k \neq 0$$

 X_0 Here that $e^{-jk2\pi} = 1$ and $e^{-jk\pi} = (-1)^k$ is used. For k = 0, $X_0 = \frac{1}{T} \int_0^T x(t) dt = \frac{1}{2}$ b) Let $a(t) = \sum_{-\infty}^{\infty} A_k e^{jk\omega t}$. Since $b(t) = \frac{da(t)}{dt}$, we have

$$b(t) = \frac{da(t)}{dt}$$
$$= \sum_{-\infty}^{\infty} A_k \frac{de^{jk\omega t}}{dt}$$
$$= \sum_{-\infty}^{\infty} jk\omega A_k e^{jk\omega t}$$

The last equation is the Fourier series expansion for b(t). So $B_k = jk\omega \times A_k$. c)

Here, we can find that $x(t) = \frac{dy(t)}{dt}$. By using the property we showed in (b) we have

$$\begin{aligned} X_k &= jk\omega Y_k \\ \Rightarrow Y_k &= \frac{X_k}{jk\omega}, k \neq 0 \\ \Rightarrow Y_k &= \frac{(-1)^k - 1}{jk^3\pi^3}, k \neq 0 \end{aligned}$$

For k = 0, $Y_0 = \frac{1}{T} \int_{-1}^{1} y(t) dt = 0$ since y(t) is an odd function. **Problem 4** (15 pts)

The following information is given for a real periodic signal x(t) with period $T_0 = 2\pi$, where X_k is its Fourier series coefficients.

- x(t) is a even function
- $X_k = 0$ for $|k| \ge 3$
- $\int_{-\pi}^{\pi} x(t) dt = 0$
- The value of the signal at time instant t = 0 is 2, i.e., x(0) = 2
- The power of x(t) is $\frac{1}{T_0} \int_0^{T_0} |x(t)|^2 dt = 2$

Find its Fourier series coefficients X_k and determine the time domain signal x(t).

Solution:

The fundamental frequency is $\Omega_0 = \frac{2\pi}{T_0} = 1$. Due to the fact $X_k = 0, |k| \ge 3$, we can determine x(t) by

$$x(t) = X_0 + X_1 e^{jt} + X_{-1} e^{-jt} + X_2 e^{j2t} + X_{-2} e^{-j2t}$$

For the DC component, we use

$$X_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x(t) dt = 0$$

Since the signal is real and even, we have $X_k = X_{-k} = X_{-k}^*$. So all the Fourier series coefficients are real and $X_1 = X_{-1}, X_2 = X_{-2}$. Let $X_1 = X_{-1} = a$ and $X_2 = X_{-2} = b$. Using x(0) = 2, we have

$$x(0) = 0 + a + a + b + b = 2a + 2b = 2$$
$$\Rightarrow a + b = 1$$

Due to the power is 2, the Parseval's relation gives

$$\sum_{k=-\infty}^{\infty} |X_k|^2 = |b|^2 + |a|^2 + |a|^2 + |b|^2 = 2|a|^2 + 2|b|^2 = 2a^2 + 2b^2 = 2$$

$$\Rightarrow a^2 + b^2 = 1$$

Substituting b = 1 - a into $a^2 + b^2 = 1$, we get (a, b) = (0, 1) or (a, b) = (1, 0). Since the fundamental period period for x(t) is $T_0 = 2\pi$, we should choose (a, b) = (1, 0) and $x(t) = e^{jt} + e^{-jt} = 2\cos(t)$ **Problem 5** (25 pts)

Consider a cascade of two systems $S_{12} = S_1 S_2$.

(a) (5 pts) Find the transfer function H₁(s) of system S₁. Express H₁(s) in terms of F₁(s) and F₂(s), where F₁(s), F₂(s) are the Laplace transforms of f₁(t) and f₂(t).

Hint:
$$e(t) = x(t) - r(t)$$

(b) (10 pts) Find the transfer function $H_{12}(s)$ of the cascaded system S_{12} , where

$$f_1(t) = t^2 e^{-4t} u(t)$$

$$f_2(t) = u(t-1) - u(t-2)$$

$$h_2(t) = e^{-2t} \cos^2(3t) u(t)$$

(c) (10 pts) Let z(t) be the steady-state response due to the periodic input signal

$$x(t) = 1 + 2\sin(t) + 3\cos(2t)$$

Find exponential Fourier series coefficients of z(t), Z_k .

Solution:

(a) We have E(s) = X(s) - R(s) and $Y(s) = F_1(s)E(s) = F_1(s)(X(s) - R(s)) = F_1(s)(X(s) - F_2(s)Y(s))$. Therefore

$$Y(s) = F_1(s)[X(s) - F_1(s)F_2(s)Y(s)]$$
$$H_1(s) = \frac{Y(s)}{X(s)} = \frac{F_1(s)}{1 + F_1(s)F_2(s)}$$

(b) The transfer function $H_{12}(s) = H_1(s)H_2(s)$

$$h_{2}(t) = e^{-2t} \cos^{2}(3t)u(t)$$

$$= e^{-2t} \frac{1 + \cos(6t)}{2}u(t)$$

$$H_{2}(s) = \frac{1}{2} \left[\frac{1}{s+2} + \frac{s+2}{(s+2)^{2} + 6^{2}} \right]$$

$$F_{1}(s) = \frac{2}{(s+4)^{3}}$$

$$F_{2}(s) = \frac{1}{s} (e^{-s} - e^{-2s})$$

$$H_{12}(s) = \frac{\frac{2}{(s+4)^{3}} \times \frac{1}{2} \left[\frac{1}{s+2} + \frac{s+2}{s^{2} + 4s + 40} \right]}{1 + \frac{2}{(s+4)^{3}} \times \frac{e^{-s} - e^{-2s}}{s}}$$

(c) $\omega_0 = 2\pi/2\pi = 1.$

First, find X_k . x(t) can be written as follows using Euler's identity

$$x(t) = 1 + \frac{2}{2j}e^{jt} + \frac{-2}{2j}e^{-jt} + \frac{3}{2}e^{j2t} + \frac{3}{2}e^{-j2t}$$

Comparing with $x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jkt}$, we get the following coefficients:

$$X_{0} = 1;$$

$$X_{-1} = \frac{-1}{j}, \quad X_{1} = \frac{1}{j}$$

$$X_{-2} = \frac{3}{2}, \quad X_{2} = \frac{3}{2}$$

Using $Z_k = H(jk\omega_0)X_k$, we get $Z_k = H(jk)X_k$, $k = 0, \pm 1, \pm 2$