UCLA DEPARTMENT OF ELECTRICAL ENGINEERING

ECE102: SYSTEMS & SIGNALS

Midterm Examination January 28, 2020 Duration: 1 hr 50 mins.

INSTRUCTIONS:

- The exam has 5 problems and 12 pages.
- The exam is closed-book.
- One cheat sheet of A4 size is allowed.
- Calculator is NOT allowed.
- \bullet Write your discussion session in the top-right corner. $\nearrow \nearrow$

Student ID:

Problem 1 (15 pts)

Consider the signal $x(t) = |\cos(2\pi t)| + \sin(3\pi t)$ for (a) and (b).

- (a) (5 pts) Sketch the even and odd components of $x(t)$.
- (b) (5 pts) Find the fundamental period of $x(t)$.
- (c) (5 pts) Consider the following signal $y(t)$. Sketch $y(-2t+3)$.

Solution:

(a)

The even part of $x(t)$ can be found using $x_e(t) = \frac{1}{2}(x(t) + x(-t))$ 1 $\frac{1}{2}(|\cos(2\pi t)| + \sin(3\pi t) + |\cos(-2\pi t)| + \sin(-3\pi t)) = |\cos(2\pi t)|$ The odd part of $x(t)$ can be found using $x_o(t) = \frac{1}{2}(x(t) - x(-t))$ 1 $\frac{1}{2}(|\cos(2\pi t)| + \sin(3\pi t) - |\cos(-2\pi t)| - \sin(-3\pi t)) = \sin(3\pi t)$

(Note: Since $x_e(t)$, $x_o(t)$ expand the entire t axis, students only need to sketch part of the signals)

```
(b)
```
The fundamental period of $|\cos(2\pi t)|$ is 0.5 and the fundamental period of $sin(3\pi t)$ is $\frac{2}{3}$. Therefore, the fundamental period of $x(t)$, T, satisfies

$$
T = 0.5m = \frac{2}{3}n
$$

where m, n are the minimum positive integer that satisfies the above equation. Then we can find $(m, n) = (4, 3)$ and $T = 2$.

(c)

Problem 2 (15 pts)

The system S is given by the following relation

$$
y(t) = x(t) \times \text{sign}(x(t))
$$

where $x(t)$ and $y(t)$ are the input and the output of the system, respectively. The function $sign(x(t))$ is defined as

$$
sign(x(t)) = \begin{cases} 1, & x(t) \ge 0\\ -1, & x(t) < 0 \end{cases}
$$

- (a) (5 pts) Is the system linear or not? Please provide justification.
- (b) (5 pts) Is the system TI or TV? Please provide justification.
- (c) (5 pts) Is this system C or NC? Please provide justification.

Solution:

(a)

The system is not linear. For example, let $x_1(t) = 1, x_2(t) = -1, x_3(t) =$ $x_1(t) + x_2(t) = 0$. The outputs for $x_1(t)$, $x_2(t)$, $x_3(t)$ will be $y_1(t) = 1$, $y_2(t) =$ $1, y_3(t) = 0$, respectively. As we can see, $y_3(t) \neq y_1(t) + y_2(t)$.

(b)

The system is TI. The output of this system can be rewritten as $y(t) =$ |x(t)|. Consider the input $x(t-t_0)$. The output will be $|x(t-t_0)| = y(t-t_0)$.

(c)

The system is causal since the output $y(t)$ doesn't depend on future inputs.

Problem 3 (20 pts)

Consider input/output (IPOP) relationship for a system S :

$$
y(t) = e^{-t} \int_{-\infty}^{t} [\sin(t)\cos(\sigma) - \cos(t)\sin(\sigma)]e^{\sigma}x(\sigma)d\sigma
$$

where $x(t)$ and $y(t)$ are the input and the output of the system, respectively.

- (a) (5 pts) Find the impulse response function $h(t, \tau)$.
- (b) (5 pts) Is the system TI or TV? Verify your answer using the impulse response of the system.
- (c) (5 pts) Is the system C or NC? Verify your answer using the impulse response of the system.
- (d) (5 pts) Is this system BIBO stable? Verify your answer using the impulse response of the system.

Solution:

(a)

We can rewrite the IPOP relationship as:

$$
y(t) = e^{-t} \int_{-\infty}^{t} \sin(t - \sigma) e^{\sigma} x(\sigma) d\sigma
$$

=
$$
\int_{-\infty}^{\infty} e^{-(t - \sigma)} \sin(t - \sigma) u(t - \sigma) x(\sigma) d\sigma.
$$

Applying impulse $x(t) = \delta(t - \tau)$ to S, we get

$$
h(t,\tau) = e^{-(t-\tau)}\sin(t-\tau)u(t-\tau).
$$

(b) Γ ^T

The system is TI since
$$
h(t, \tau) = h(t - \tau)
$$
. So we have $h(t) = e^{-t} \sin(t) u(t)$.

(c)

The system is causal (C) since $h(t) = 0$ for $t < 0$.

(d)

For BIBO stability we check if $h(t)$ is absolutely integrable.

$$
\int_{-\infty}^{\infty} |h(t)| dt = \int_{0}^{\infty} |e^{-t} \sin(t)| dt
$$

$$
= \int_{0}^{\infty} e^{-t} |\sin(t)| dt
$$

$$
\leq \int_{0}^{\infty} e^{-t} dt = 1 < \infty
$$

The impulse response is absolutely integrable, therefore it is BIBO stable.

Problem 4 (20 pts)

Consider IPOP relationship for a LTI system S :

$$
y(t) = e^{-3t} \int_{-\infty}^{t} 2e^{3\tau} \cos^2(t - \tau)x(\tau) - e^{3\tau}x(\tau)d\tau
$$

where $x(t)$ and $y(t)$ are the input and the output of the system, respectively.

- (a) (10 pts) Find the impulse response function.
- (b) (10 pts) Compute the output $y(t)$ given that its input is

$$
x(t) = e^{-3t}u(t).
$$

Solution:

(a)

We can rewrite the IPOP relationship as:

$$
y(t) = e^{-3t} \int_{-\infty}^{t} e^{3\tau} x(\tau) (2 \cos^2(t - \tau) - 1) d\tau
$$

= $e^{-3t} \int_{-\infty}^{t} e^{3\tau} x(\tau) \cos(2(t - \tau)) d\tau$
= $\int_{-\infty}^{t} e^{-3(t-\tau)} \cos(2(t - \tau)) x(\tau) d\tau$
= $\int_{-\infty}^{\infty} e^{-3(t-\tau)} \cos(2(t - \tau)) u(t - \tau) x(\tau) d\tau$.

Applying impulse $x(t) = \delta(t)$ to S, we get

$$
h(t) = e^{-3t} \cos(2t) u(t).
$$

(b)

$$
y(t) = h(t) * x(t)
$$

=
$$
\int_{-\infty}^{\infty} e^{-3(t-\tau)} \cos(2(t-\tau))u(t-\tau)e^{-3\tau}u(\tau)d\tau
$$

=
$$
e^{-3t} \int_{0}^{t} \cos(2(t-\tau))d\tau
$$

=
$$
\frac{1}{2}e^{-3t} \sin(2t)u(t)
$$

Problem 5 (20 pts)

Consider a cascade of two systems $S_{12} = S_1 S_2$. The first system S_1 is described by:

$$
y(t) = \int_{-\infty}^{t} (t - \sigma)x(\sigma)d\sigma,
$$

where $x(t)$ and $y(t)$ are the input and the output, respectively. The second system is described by:

$$
z(t) = \int_{-\infty}^{t-1} e^{(t-\sigma+1)} y(\sigma) d\sigma,
$$

where $y(t)$ and $z(t)$ and the input and the output, respectively.

- (a) (5 pts) Find the impulse response function $h_1(t, \tau)$. Is the system S_1 TI or TV?
- (b) (5 pts) Find the impulse response function $h_2(t, \tau)$. Is the system S_2 TI or TV?
- (c) (10 pts) Find the impulse response function $h_{12}(t, \tau)$ of the cascaded system S_{12} . Is the cascaded system TI or TV?

Solution:

(a)

Rewrite the IPOP relationship of S_1 as:

$$
y(t) = \int_{-\infty}^{\infty} (t - \sigma)u(t - \sigma)x(\sigma)d\sigma
$$

Applying impulse $x(t) = \delta(t - \tau)$ to S_1 , we get

$$
h_1(t, \tau) = (t - \tau)u(t - \tau) = h_1(t - \tau).
$$

 S_1 is a TI system.

(b)

Rewrite the IPOP relationship of S_2 as:

$$
z(t) = \int_{-\infty}^{\infty} e^{(t-\sigma+1)} u(t-1-\sigma) y(\sigma) d\sigma
$$

Applying impulse $x(t) = \delta(t - \tau)$ to S_2 , we get

$$
h_2(t,\tau) = e^{(t-\tau+1)}u(t-\tau-1) = h_2(t-\tau).
$$

 \mathcal{S}_2 is a TI system.

(b)

Apply $y(t) = h_1(t, \tau)$ as an input to S_2 to get

$$
h_{12}(t,\tau) = \int_{-\infty}^{t-1} e^{(t-\sigma+1)} h_1(\sigma,\tau) d\sigma
$$

=
$$
\int_{-\infty}^{t-1} e^{(t-\sigma+1)} (\sigma-\tau) u(\sigma-\tau) d\sigma
$$

=
$$
\int_{\tau}^{t-1} e^{(t-\sigma+1)} (\sigma-\tau) d\sigma
$$

=
$$
\int_{\tau}^{t-1} \sigma e^{(t-\sigma+1)} - \int_{\tau}^{t-1} \tau e^{(t-\sigma+1)} d\sigma
$$

=
$$
-(t-\tau)e^2 + e^{t-\tau+1} = h_{12}(t-\tau)
$$

The cascaded system is TI.